MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-uni Structured version   Visualization version   GIF version

Theorem ex-uni 27283
Description: Example for df-uni 4437. Example by David A. Wheeler. (Contributed by Mario Carneiro, 2-Jul-2016.)
Assertion
Ref Expression
ex-uni {{1, 3}, {1, 8}} = {1, 3, 8}

Proof of Theorem ex-uni
StepHypRef Expression
1 prex 4909 . . 3 {1, 3} ∈ V
2 prex 4909 . . 3 {1, 8} ∈ V
31, 2unipr 4449 . 2 {{1, 3}, {1, 8}} = ({1, 3} ∪ {1, 8})
4 ex-un 27281 . 2 ({1, 3} ∪ {1, 8}) = {1, 3, 8}
53, 4eqtri 2644 1 {{1, 3}, {1, 8}} = {1, 3, 8}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1483  cun 3572  {cpr 4179  {ctp 4181   cuni 4436  1c1 9937  3c3 11071  8c8 11076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-sn 4178  df-pr 4180  df-tp 4182  df-uni 4437
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator