| Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > exellimddv | Structured version Visualization version GIF version | ||
| Description: Eliminate an antecedent when the antecedent is elementhood, deduction version. See exellim 33192 for the closed form, which requires the use of a universal quantifier. (Contributed by ML, 17-Jul-2020.) |
| Ref | Expression |
|---|---|
| exellimddv.1 | ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) |
| exellimddv.2 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) |
| Ref | Expression |
|---|---|
| exellimddv | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exellimddv.1 | . 2 ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) | |
| 2 | exellimddv.2 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) | |
| 3 | 2 | alrimiv 1855 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) |
| 4 | exellim 33192 | . 2 ⊢ ((∃𝑥 𝑥 ∈ 𝐴 ∧ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) → 𝜓) | |
| 5 | 1, 3, 4 | syl2anc 693 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1481 ∃wex 1704 ∈ wcel 1990 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ex 1705 df-nf 1710 |
| This theorem is referenced by: topdifinffinlem 33195 |
| Copyright terms: Public domain | W3C validator |