Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exellimddv Structured version   Visualization version   Unicode version

Theorem exellimddv 33193
Description: Eliminate an antecedent when the antecedent is elementhood, deduction version. See exellim 33192 for the closed form, which requires the use of a universal quantifier. (Contributed by ML, 17-Jul-2020.)
Hypotheses
Ref Expression
exellimddv.1  |-  ( ph  ->  E. x  x  e.  A )
exellimddv.2  |-  ( ph  ->  ( x  e.  A  ->  ps ) )
Assertion
Ref Expression
exellimddv  |-  ( ph  ->  ps )
Distinct variable groups:    ph, x    ps, x
Allowed substitution hint:    A( x)

Proof of Theorem exellimddv
StepHypRef Expression
1 exellimddv.1 . 2  |-  ( ph  ->  E. x  x  e.  A )
2 exellimddv.2 . . 3  |-  ( ph  ->  ( x  e.  A  ->  ps ) )
32alrimiv 1855 . 2  |-  ( ph  ->  A. x ( x  e.  A  ->  ps ) )
4 exellim 33192 . 2  |-  ( ( E. x  x  e.  A  /\  A. x
( x  e.  A  ->  ps ) )  ->  ps )
51, 3, 4syl2anc 693 1  |-  ( ph  ->  ps )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1481   E.wex 1704    e. wcel 1990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-12 2047
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ex 1705  df-nf 1710
This theorem is referenced by:  topdifinffinlem  33195
  Copyright terms: Public domain W3C validator