| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exmo | Structured version Visualization version GIF version | ||
| Description: Something exists or at most one exists. (Contributed by NM, 8-Mar-1995.) |
| Ref | Expression |
|---|---|
| exmo | ⊢ (∃𝑥𝜑 ∨ ∃*𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.21 120 | . . 3 ⊢ (¬ ∃𝑥𝜑 → (∃𝑥𝜑 → ∃!𝑥𝜑)) | |
| 2 | df-mo 2475 | . . 3 ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) | |
| 3 | 1, 2 | sylibr 224 | . 2 ⊢ (¬ ∃𝑥𝜑 → ∃*𝑥𝜑) |
| 4 | 3 | orri 391 | 1 ⊢ (∃𝑥𝜑 ∨ ∃*𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 383 ∃wex 1704 ∃!weu 2470 ∃*wmo 2471 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-mo 2475 |
| This theorem is referenced by: exmoeu 2502 moanim 2529 moexex 2541 mo2icl 3385 mosubopt 4972 dff3 6372 brdom3 9350 mof 32409 |
| Copyright terms: Public domain | W3C validator |