![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > euex | Structured version Visualization version GIF version |
Description: Existential uniqueness implies existence. For a shorter proof using more axioms, see euexALT 2511. (Contributed by NM, 15-Sep-1993.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) (Proof shortened by Wolf Lammen, 4-Dec-2018.) |
Ref | Expression |
---|---|
euex | ⊢ (∃!𝑥𝜑 → ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eu 2474 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | |
2 | ax6ev 1890 | . . . . 5 ⊢ ∃𝑥 𝑥 = 𝑦 | |
3 | biimpr 210 | . . . . . 6 ⊢ ((𝜑 ↔ 𝑥 = 𝑦) → (𝑥 = 𝑦 → 𝜑)) | |
4 | 3 | com12 32 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝜑 ↔ 𝑥 = 𝑦) → 𝜑)) |
5 | 2, 4 | eximii 1764 | . . . 4 ⊢ ∃𝑥((𝜑 ↔ 𝑥 = 𝑦) → 𝜑) |
6 | 5 | 19.35i 1806 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∃𝑥𝜑) |
7 | 6 | exlimiv 1858 | . 2 ⊢ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∃𝑥𝜑) |
8 | 1, 7 | sylbi 207 | 1 ⊢ (∃!𝑥𝜑 → ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∀wal 1481 ∃wex 1704 ∃!weu 2470 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 |
This theorem depends on definitions: df-bi 197 df-ex 1705 df-eu 2474 |
This theorem is referenced by: eu5 2496 exmoeu 2502 euan 2530 eupickbi 2539 2eu2ex 2546 2exeu 2549 euxfr 3392 eusvnf 4861 eusvnfb 4862 reusv2lem2 4869 reusv2lem2OLD 4870 reusv2lem3 4871 csbiota 5881 dffv3 6187 tz6.12c 6213 ndmfv 6218 dff3 6372 csbriota 6623 eusvobj2 6643 fnoprabg 6761 zfrep6 7134 dfac5lem5 8950 initoeu1 16661 initoeu1w 16662 initoeu2 16666 termoeu1 16668 termoeu1w 16669 grpidval 17260 0g0 17263 txcn 21429 bnj605 30977 bnj607 30986 bnj906 31000 bnj908 31001 unnf 32406 unqsym1 32424 moxfr 37255 eu2ndop1stv 41202 afveu 41233 zrninitoringc 42071 |
Copyright terms: Public domain | W3C validator |