| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exmoeu | Structured version Visualization version GIF version | ||
| Description: Existence in terms of "at most one" and uniqueness. (Contributed by NM, 5-Apr-2004.) (Proof shortened by Wolf Lammen, 5-Dec-2018.) |
| Ref | Expression |
|---|---|
| exmoeu | ⊢ (∃𝑥𝜑 ↔ (∃*𝑥𝜑 → ∃!𝑥𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mo 2475 | . . . 4 ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) | |
| 2 | 1 | biimpi 206 | . . 3 ⊢ (∃*𝑥𝜑 → (∃𝑥𝜑 → ∃!𝑥𝜑)) |
| 3 | 2 | com12 32 | . 2 ⊢ (∃𝑥𝜑 → (∃*𝑥𝜑 → ∃!𝑥𝜑)) |
| 4 | exmo 2495 | . . . . 5 ⊢ (∃𝑥𝜑 ∨ ∃*𝑥𝜑) | |
| 5 | 4 | ori 390 | . . . 4 ⊢ (¬ ∃𝑥𝜑 → ∃*𝑥𝜑) |
| 6 | 5 | con1i 144 | . . 3 ⊢ (¬ ∃*𝑥𝜑 → ∃𝑥𝜑) |
| 7 | euex 2494 | . . 3 ⊢ (∃!𝑥𝜑 → ∃𝑥𝜑) | |
| 8 | 6, 7 | ja 173 | . 2 ⊢ ((∃*𝑥𝜑 → ∃!𝑥𝜑) → ∃𝑥𝜑) |
| 9 | 3, 8 | impbii 199 | 1 ⊢ (∃𝑥𝜑 ↔ (∃*𝑥𝜑 → ∃!𝑥𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 ∃wex 1704 ∃!weu 2470 ∃*wmo 2471 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-ex 1705 df-eu 2474 df-mo 2475 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |