MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fdmrn Structured version   Visualization version   GIF version

Theorem fdmrn 6064
Description: A different way to write 𝐹 is a function. (Contributed by Thierry Arnoux, 7-Dec-2016.)
Assertion
Ref Expression
fdmrn (Fun 𝐹𝐹:dom 𝐹⟶ran 𝐹)

Proof of Theorem fdmrn
StepHypRef Expression
1 ssid 3624 . . 3 ran 𝐹 ⊆ ran 𝐹
2 df-f 5892 . . 3 (𝐹:dom 𝐹⟶ran 𝐹 ↔ (𝐹 Fn dom 𝐹 ∧ ran 𝐹 ⊆ ran 𝐹))
31, 2mpbiran2 954 . 2 (𝐹:dom 𝐹⟶ran 𝐹𝐹 Fn dom 𝐹)
4 eqid 2622 . . 3 dom 𝐹 = dom 𝐹
5 df-fn 5891 . . 3 (𝐹 Fn dom 𝐹 ↔ (Fun 𝐹 ∧ dom 𝐹 = dom 𝐹))
64, 5mpbiran2 954 . 2 (𝐹 Fn dom 𝐹 ↔ Fun 𝐹)
73, 6bitr2i 265 1 (Fun 𝐹𝐹:dom 𝐹⟶ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wb 196   = wceq 1483  wss 3574  dom cdm 5114  ran crn 5115  Fun wfun 5882   Fn wfn 5883  wf 5884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-in 3581  df-ss 3588  df-fn 5891  df-f 5892
This theorem is referenced by:  nvof1o  6536  umgrwwlks2on  26850  rinvf1o  29432  smatrcl  29862  locfinref  29908  fco3  39421  limccog  39852
  Copyright terms: Public domain W3C validator