Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fco3 Structured version   Visualization version   GIF version

Theorem fco3 39421
Description: Functionality of a composition. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
fco3.1 (𝜑 → Fun 𝐹)
fco3.2 (𝜑 → Fun 𝐺)
Assertion
Ref Expression
fco3 (𝜑 → (𝐹𝐺):(𝐺 “ dom 𝐹)⟶ran 𝐹)

Proof of Theorem fco3
StepHypRef Expression
1 fco3.1 . . . . 5 (𝜑 → Fun 𝐹)
2 fco3.2 . . . . 5 (𝜑 → Fun 𝐺)
3 funco 5928 . . . . 5 ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹𝐺))
41, 2, 3syl2anc 693 . . . 4 (𝜑 → Fun (𝐹𝐺))
5 fdmrn 6064 . . . 4 (Fun (𝐹𝐺) ↔ (𝐹𝐺):dom (𝐹𝐺)⟶ran (𝐹𝐺))
64, 5sylib 208 . . 3 (𝜑 → (𝐹𝐺):dom (𝐹𝐺)⟶ran (𝐹𝐺))
7 dmco 5643 . . . . 5 dom (𝐹𝐺) = (𝐺 “ dom 𝐹)
87feq2i 6037 . . . 4 ((𝐹𝐺):dom (𝐹𝐺)⟶ran (𝐹𝐺) ↔ (𝐹𝐺):(𝐺 “ dom 𝐹)⟶ran (𝐹𝐺))
98a1i 11 . . 3 (𝜑 → ((𝐹𝐺):dom (𝐹𝐺)⟶ran (𝐹𝐺) ↔ (𝐹𝐺):(𝐺 “ dom 𝐹)⟶ran (𝐹𝐺)))
106, 9mpbid 222 . 2 (𝜑 → (𝐹𝐺):(𝐺 “ dom 𝐹)⟶ran (𝐹𝐺))
11 rncoss 5386 . . 3 ran (𝐹𝐺) ⊆ ran 𝐹
1211a1i 11 . 2 (𝜑 → ran (𝐹𝐺) ⊆ ran 𝐹)
1310, 12fssd 6057 1 (𝜑 → (𝐹𝐺):(𝐺 “ dom 𝐹)⟶ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wss 3574  ccnv 5113  dom cdm 5114  ran crn 5115  cima 5117  ccom 5118  Fun wfun 5882  wf 5884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-fun 5890  df-fn 5891  df-f 5892
This theorem is referenced by:  smfco  41009
  Copyright terms: Public domain W3C validator