![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fglmod | Structured version Visualization version GIF version |
Description: Finitely generated left modules are left modules. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
Ref | Expression |
---|---|
fglmod | ⊢ (𝑀 ∈ LFinGen → 𝑀 ∈ LMod) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lfig 37638 | . . 3 ⊢ LFinGen = {𝑎 ∈ LMod ∣ (Base‘𝑎) ∈ ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin))} | |
2 | ssrab2 3687 | . . 3 ⊢ {𝑎 ∈ LMod ∣ (Base‘𝑎) ∈ ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin))} ⊆ LMod | |
3 | 1, 2 | eqsstri 3635 | . 2 ⊢ LFinGen ⊆ LMod |
4 | 3 | sseli 3599 | 1 ⊢ (𝑀 ∈ LFinGen → 𝑀 ∈ LMod) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 1990 {crab 2916 ∩ cin 3573 𝒫 cpw 4158 “ cima 5117 ‘cfv 5888 Fincfn 7955 Basecbs 15857 LModclmod 18863 LSpanclspn 18971 LFinGenclfig 37637 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rab 2921 df-in 3581 df-ss 3588 df-lfig 37638 |
This theorem is referenced by: lnrfg 37689 |
Copyright terms: Public domain | W3C validator |