Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fglmod Structured version   Visualization version   Unicode version

Theorem fglmod 37643
Description: Finitely generated left modules are left modules. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Assertion
Ref Expression
fglmod  |-  ( M  e. LFinGen  ->  M  e.  LMod )

Proof of Theorem fglmod
StepHypRef Expression
1 df-lfig 37638 . . 3  |- LFinGen  =  {
a  e.  LMod  |  (
Base `  a )  e.  ( ( LSpan `  a
) " ( ~P ( Base `  a
)  i^i  Fin )
) }
2 ssrab2 3687 . . 3  |-  { a  e.  LMod  |  ( Base `  a )  e.  ( ( LSpan `  a
) " ( ~P ( Base `  a
)  i^i  Fin )
) }  C_  LMod
31, 2eqsstri 3635 . 2  |- LFinGen  C_  LMod
43sseli 3599 1  |-  ( M  e. LFinGen  ->  M  e.  LMod )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1990   {crab 2916    i^i cin 3573   ~Pcpw 4158   "cima 5117   ` cfv 5888   Fincfn 7955   Basecbs 15857   LModclmod 18863   LSpanclspn 18971  LFinGenclfig 37637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-in 3581  df-ss 3588  df-lfig 37638
This theorem is referenced by:  lnrfg  37689
  Copyright terms: Public domain W3C validator