MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fr3nr Structured version   Visualization version   GIF version

Theorem fr3nr 6979
Description: A well-founded relation has no 3-cycle loops. Special case of Proposition 6.23 of [TakeutiZaring] p. 30. (Contributed by NM, 10-Apr-1994.) (Revised by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
fr3nr ((𝑅 Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ¬ (𝐵𝑅𝐶𝐶𝑅𝐷𝐷𝑅𝐵))

Proof of Theorem fr3nr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tpex 6957 . . . . . . 7 {𝐵, 𝐶, 𝐷} ∈ V
21a1i 11 . . . . . 6 ((𝑅 Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → {𝐵, 𝐶, 𝐷} ∈ V)
3 simpl 473 . . . . . 6 ((𝑅 Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → 𝑅 Fr 𝐴)
4 df-tp 4182 . . . . . . 7 {𝐵, 𝐶, 𝐷} = ({𝐵, 𝐶} ∪ {𝐷})
5 simpr1 1067 . . . . . . . . 9 ((𝑅 Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → 𝐵𝐴)
6 simpr2 1068 . . . . . . . . 9 ((𝑅 Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → 𝐶𝐴)
7 prssi 4353 . . . . . . . . 9 ((𝐵𝐴𝐶𝐴) → {𝐵, 𝐶} ⊆ 𝐴)
85, 6, 7syl2anc 693 . . . . . . . 8 ((𝑅 Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → {𝐵, 𝐶} ⊆ 𝐴)
9 simpr3 1069 . . . . . . . . 9 ((𝑅 Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → 𝐷𝐴)
109snssd 4340 . . . . . . . 8 ((𝑅 Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → {𝐷} ⊆ 𝐴)
118, 10unssd 3789 . . . . . . 7 ((𝑅 Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ({𝐵, 𝐶} ∪ {𝐷}) ⊆ 𝐴)
124, 11syl5eqss 3649 . . . . . 6 ((𝑅 Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → {𝐵, 𝐶, 𝐷} ⊆ 𝐴)
135tpnzd 4314 . . . . . 6 ((𝑅 Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → {𝐵, 𝐶, 𝐷} ≠ ∅)
14 fri 5076 . . . . . 6 ((({𝐵, 𝐶, 𝐷} ∈ V ∧ 𝑅 Fr 𝐴) ∧ ({𝐵, 𝐶, 𝐷} ⊆ 𝐴 ∧ {𝐵, 𝐶, 𝐷} ≠ ∅)) → ∃𝑥 ∈ {𝐵, 𝐶, 𝐷}∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝑥)
152, 3, 12, 13, 14syl22anc 1327 . . . . 5 ((𝑅 Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ∃𝑥 ∈ {𝐵, 𝐶, 𝐷}∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝑥)
16 breq2 4657 . . . . . . . . 9 (𝑥 = 𝐵 → (𝑦𝑅𝑥𝑦𝑅𝐵))
1716notbid 308 . . . . . . . 8 (𝑥 = 𝐵 → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑦𝑅𝐵))
1817ralbidv 2986 . . . . . . 7 (𝑥 = 𝐵 → (∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝑥 ↔ ∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐵))
19 breq2 4657 . . . . . . . . 9 (𝑥 = 𝐶 → (𝑦𝑅𝑥𝑦𝑅𝐶))
2019notbid 308 . . . . . . . 8 (𝑥 = 𝐶 → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑦𝑅𝐶))
2120ralbidv 2986 . . . . . . 7 (𝑥 = 𝐶 → (∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝑥 ↔ ∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐶))
22 breq2 4657 . . . . . . . . 9 (𝑥 = 𝐷 → (𝑦𝑅𝑥𝑦𝑅𝐷))
2322notbid 308 . . . . . . . 8 (𝑥 = 𝐷 → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑦𝑅𝐷))
2423ralbidv 2986 . . . . . . 7 (𝑥 = 𝐷 → (∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝑥 ↔ ∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐷))
2518, 21, 24rextpg 4237 . . . . . 6 ((𝐵𝐴𝐶𝐴𝐷𝐴) → (∃𝑥 ∈ {𝐵, 𝐶, 𝐷}∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝑥 ↔ (∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐵 ∨ ∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐶 ∨ ∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐷)))
2625adantl 482 . . . . 5 ((𝑅 Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → (∃𝑥 ∈ {𝐵, 𝐶, 𝐷}∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝑥 ↔ (∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐵 ∨ ∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐶 ∨ ∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐷)))
2715, 26mpbid 222 . . . 4 ((𝑅 Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → (∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐵 ∨ ∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐶 ∨ ∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐷))
28 snsstp3 4349 . . . . . . 7 {𝐷} ⊆ {𝐵, 𝐶, 𝐷}
29 snssg 4327 . . . . . . . 8 (𝐷𝐴 → (𝐷 ∈ {𝐵, 𝐶, 𝐷} ↔ {𝐷} ⊆ {𝐵, 𝐶, 𝐷}))
309, 29syl 17 . . . . . . 7 ((𝑅 Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → (𝐷 ∈ {𝐵, 𝐶, 𝐷} ↔ {𝐷} ⊆ {𝐵, 𝐶, 𝐷}))
3128, 30mpbiri 248 . . . . . 6 ((𝑅 Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → 𝐷 ∈ {𝐵, 𝐶, 𝐷})
32 breq1 4656 . . . . . . . 8 (𝑦 = 𝐷 → (𝑦𝑅𝐵𝐷𝑅𝐵))
3332notbid 308 . . . . . . 7 (𝑦 = 𝐷 → (¬ 𝑦𝑅𝐵 ↔ ¬ 𝐷𝑅𝐵))
3433rspcv 3305 . . . . . 6 (𝐷 ∈ {𝐵, 𝐶, 𝐷} → (∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐵 → ¬ 𝐷𝑅𝐵))
3531, 34syl 17 . . . . 5 ((𝑅 Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → (∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐵 → ¬ 𝐷𝑅𝐵))
36 snsstp1 4347 . . . . . . 7 {𝐵} ⊆ {𝐵, 𝐶, 𝐷}
37 snssg 4327 . . . . . . . 8 (𝐵𝐴 → (𝐵 ∈ {𝐵, 𝐶, 𝐷} ↔ {𝐵} ⊆ {𝐵, 𝐶, 𝐷}))
385, 37syl 17 . . . . . . 7 ((𝑅 Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → (𝐵 ∈ {𝐵, 𝐶, 𝐷} ↔ {𝐵} ⊆ {𝐵, 𝐶, 𝐷}))
3936, 38mpbiri 248 . . . . . 6 ((𝑅 Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → 𝐵 ∈ {𝐵, 𝐶, 𝐷})
40 breq1 4656 . . . . . . . 8 (𝑦 = 𝐵 → (𝑦𝑅𝐶𝐵𝑅𝐶))
4140notbid 308 . . . . . . 7 (𝑦 = 𝐵 → (¬ 𝑦𝑅𝐶 ↔ ¬ 𝐵𝑅𝐶))
4241rspcv 3305 . . . . . 6 (𝐵 ∈ {𝐵, 𝐶, 𝐷} → (∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐶 → ¬ 𝐵𝑅𝐶))
4339, 42syl 17 . . . . 5 ((𝑅 Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → (∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐶 → ¬ 𝐵𝑅𝐶))
44 snsstp2 4348 . . . . . . 7 {𝐶} ⊆ {𝐵, 𝐶, 𝐷}
45 snssg 4327 . . . . . . . 8 (𝐶𝐴 → (𝐶 ∈ {𝐵, 𝐶, 𝐷} ↔ {𝐶} ⊆ {𝐵, 𝐶, 𝐷}))
466, 45syl 17 . . . . . . 7 ((𝑅 Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → (𝐶 ∈ {𝐵, 𝐶, 𝐷} ↔ {𝐶} ⊆ {𝐵, 𝐶, 𝐷}))
4744, 46mpbiri 248 . . . . . 6 ((𝑅 Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → 𝐶 ∈ {𝐵, 𝐶, 𝐷})
48 breq1 4656 . . . . . . . 8 (𝑦 = 𝐶 → (𝑦𝑅𝐷𝐶𝑅𝐷))
4948notbid 308 . . . . . . 7 (𝑦 = 𝐶 → (¬ 𝑦𝑅𝐷 ↔ ¬ 𝐶𝑅𝐷))
5049rspcv 3305 . . . . . 6 (𝐶 ∈ {𝐵, 𝐶, 𝐷} → (∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐷 → ¬ 𝐶𝑅𝐷))
5147, 50syl 17 . . . . 5 ((𝑅 Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → (∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐷 → ¬ 𝐶𝑅𝐷))
5235, 43, 513orim123d 1407 . . . 4 ((𝑅 Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ((∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐵 ∨ ∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐶 ∨ ∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐷) → (¬ 𝐷𝑅𝐵 ∨ ¬ 𝐵𝑅𝐶 ∨ ¬ 𝐶𝑅𝐷)))
5327, 52mpd 15 . . 3 ((𝑅 Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → (¬ 𝐷𝑅𝐵 ∨ ¬ 𝐵𝑅𝐶 ∨ ¬ 𝐶𝑅𝐷))
54 3ianor 1055 . . 3 (¬ (𝐷𝑅𝐵𝐵𝑅𝐶𝐶𝑅𝐷) ↔ (¬ 𝐷𝑅𝐵 ∨ ¬ 𝐵𝑅𝐶 ∨ ¬ 𝐶𝑅𝐷))
5553, 54sylibr 224 . 2 ((𝑅 Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ¬ (𝐷𝑅𝐵𝐵𝑅𝐶𝐶𝑅𝐷))
56 3anrot 1043 . 2 ((𝐷𝑅𝐵𝐵𝑅𝐶𝐶𝑅𝐷) ↔ (𝐵𝑅𝐶𝐶𝑅𝐷𝐷𝑅𝐵))
5755, 56sylnib 318 1 ((𝑅 Fr 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ¬ (𝐵𝑅𝐶𝐶𝑅𝐷𝐷𝑅𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3o 1036  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  Vcvv 3200  cun 3572  wss 3574  c0 3915  {csn 4177  {cpr 4179  {ctp 4181   class class class wbr 4653   Fr wfr 5070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-fr 5073
This theorem is referenced by:  epne3  6980  dfwe2  6981
  Copyright terms: Public domain W3C validator