| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fr3nr | Structured version Visualization version Unicode version | ||
| Description: A well-founded relation has no 3-cycle loops. Special case of Proposition 6.23 of [TakeutiZaring] p. 30. (Contributed by NM, 10-Apr-1994.) (Revised by Mario Carneiro, 22-Jun-2015.) |
| Ref | Expression |
|---|---|
| fr3nr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpex 6957 |
. . . . . . 7
| |
| 2 | 1 | a1i 11 |
. . . . . 6
|
| 3 | simpl 473 |
. . . . . 6
| |
| 4 | df-tp 4182 |
. . . . . . 7
| |
| 5 | simpr1 1067 |
. . . . . . . . 9
| |
| 6 | simpr2 1068 |
. . . . . . . . 9
| |
| 7 | prssi 4353 |
. . . . . . . . 9
| |
| 8 | 5, 6, 7 | syl2anc 693 |
. . . . . . . 8
|
| 9 | simpr3 1069 |
. . . . . . . . 9
| |
| 10 | 9 | snssd 4340 |
. . . . . . . 8
|
| 11 | 8, 10 | unssd 3789 |
. . . . . . 7
|
| 12 | 4, 11 | syl5eqss 3649 |
. . . . . 6
|
| 13 | 5 | tpnzd 4314 |
. . . . . 6
|
| 14 | fri 5076 |
. . . . . 6
| |
| 15 | 2, 3, 12, 13, 14 | syl22anc 1327 |
. . . . 5
|
| 16 | breq2 4657 |
. . . . . . . . 9
| |
| 17 | 16 | notbid 308 |
. . . . . . . 8
|
| 18 | 17 | ralbidv 2986 |
. . . . . . 7
|
| 19 | breq2 4657 |
. . . . . . . . 9
| |
| 20 | 19 | notbid 308 |
. . . . . . . 8
|
| 21 | 20 | ralbidv 2986 |
. . . . . . 7
|
| 22 | breq2 4657 |
. . . . . . . . 9
| |
| 23 | 22 | notbid 308 |
. . . . . . . 8
|
| 24 | 23 | ralbidv 2986 |
. . . . . . 7
|
| 25 | 18, 21, 24 | rextpg 4237 |
. . . . . 6
|
| 26 | 25 | adantl 482 |
. . . . 5
|
| 27 | 15, 26 | mpbid 222 |
. . . 4
|
| 28 | snsstp3 4349 |
. . . . . . 7
| |
| 29 | snssg 4327 |
. . . . . . . 8
| |
| 30 | 9, 29 | syl 17 |
. . . . . . 7
|
| 31 | 28, 30 | mpbiri 248 |
. . . . . 6
|
| 32 | breq1 4656 |
. . . . . . . 8
| |
| 33 | 32 | notbid 308 |
. . . . . . 7
|
| 34 | 33 | rspcv 3305 |
. . . . . 6
|
| 35 | 31, 34 | syl 17 |
. . . . 5
|
| 36 | snsstp1 4347 |
. . . . . . 7
| |
| 37 | snssg 4327 |
. . . . . . . 8
| |
| 38 | 5, 37 | syl 17 |
. . . . . . 7
|
| 39 | 36, 38 | mpbiri 248 |
. . . . . 6
|
| 40 | breq1 4656 |
. . . . . . . 8
| |
| 41 | 40 | notbid 308 |
. . . . . . 7
|
| 42 | 41 | rspcv 3305 |
. . . . . 6
|
| 43 | 39, 42 | syl 17 |
. . . . 5
|
| 44 | snsstp2 4348 |
. . . . . . 7
| |
| 45 | snssg 4327 |
. . . . . . . 8
| |
| 46 | 6, 45 | syl 17 |
. . . . . . 7
|
| 47 | 44, 46 | mpbiri 248 |
. . . . . 6
|
| 48 | breq1 4656 |
. . . . . . . 8
| |
| 49 | 48 | notbid 308 |
. . . . . . 7
|
| 50 | 49 | rspcv 3305 |
. . . . . 6
|
| 51 | 47, 50 | syl 17 |
. . . . 5
|
| 52 | 35, 43, 51 | 3orim123d 1407 |
. . . 4
|
| 53 | 27, 52 | mpd 15 |
. . 3
|
| 54 | 3ianor 1055 |
. . 3
| |
| 55 | 53, 54 | sylibr 224 |
. 2
|
| 56 | 3anrot 1043 |
. 2
| |
| 57 | 55, 56 | sylnib 318 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-fr 5073 |
| This theorem is referenced by: epne3 6980 dfwe2 6981 |
| Copyright terms: Public domain | W3C validator |