MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fr3nr Structured version   Visualization version   Unicode version

Theorem fr3nr 6979
Description: A well-founded relation has no 3-cycle loops. Special case of Proposition 6.23 of [TakeutiZaring] p. 30. (Contributed by NM, 10-Apr-1994.) (Revised by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
fr3nr  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  -.  ( B R C  /\  C R D  /\  D R B ) )

Proof of Theorem fr3nr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tpex 6957 . . . . . . 7  |-  { B ,  C ,  D }  e.  _V
21a1i 11 . . . . . 6  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  { B ,  C ,  D }  e.  _V )
3 simpl 473 . . . . . 6  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  R  Fr  A )
4 df-tp 4182 . . . . . . 7  |-  { B ,  C ,  D }  =  ( { B ,  C }  u.  { D } )
5 simpr1 1067 . . . . . . . . 9  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  B  e.  A )
6 simpr2 1068 . . . . . . . . 9  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  C  e.  A )
7 prssi 4353 . . . . . . . . 9  |-  ( ( B  e.  A  /\  C  e.  A )  ->  { B ,  C }  C_  A )
85, 6, 7syl2anc 693 . . . . . . . 8  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  { B ,  C }  C_  A
)
9 simpr3 1069 . . . . . . . . 9  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  D  e.  A )
109snssd 4340 . . . . . . . 8  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  { D }  C_  A )
118, 10unssd 3789 . . . . . . 7  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  ( { B ,  C }  u.  { D } ) 
C_  A )
124, 11syl5eqss 3649 . . . . . 6  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  { B ,  C ,  D }  C_  A )
135tpnzd 4314 . . . . . 6  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  { B ,  C ,  D }  =/=  (/) )
14 fri 5076 . . . . . 6  |-  ( ( ( { B ,  C ,  D }  e.  _V  /\  R  Fr  A )  /\  ( { B ,  C ,  D }  C_  A  /\  { B ,  C ,  D }  =/=  (/) ) )  ->  E. x  e.  { B ,  C ,  D } A. y  e. 
{ B ,  C ,  D }  -.  y R x )
152, 3, 12, 13, 14syl22anc 1327 . . . . 5  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  E. x  e.  { B ,  C ,  D } A. y  e.  { B ,  C ,  D }  -.  y R x )
16 breq2 4657 . . . . . . . . 9  |-  ( x  =  B  ->  (
y R x  <->  y R B ) )
1716notbid 308 . . . . . . . 8  |-  ( x  =  B  ->  ( -.  y R x  <->  -.  y R B ) )
1817ralbidv 2986 . . . . . . 7  |-  ( x  =  B  ->  ( A. y  e.  { B ,  C ,  D }  -.  y R x  <->  A. y  e.  { B ,  C ,  D }  -.  y R B ) )
19 breq2 4657 . . . . . . . . 9  |-  ( x  =  C  ->  (
y R x  <->  y R C ) )
2019notbid 308 . . . . . . . 8  |-  ( x  =  C  ->  ( -.  y R x  <->  -.  y R C ) )
2120ralbidv 2986 . . . . . . 7  |-  ( x  =  C  ->  ( A. y  e.  { B ,  C ,  D }  -.  y R x  <->  A. y  e.  { B ,  C ,  D }  -.  y R C ) )
22 breq2 4657 . . . . . . . . 9  |-  ( x  =  D  ->  (
y R x  <->  y R D ) )
2322notbid 308 . . . . . . . 8  |-  ( x  =  D  ->  ( -.  y R x  <->  -.  y R D ) )
2423ralbidv 2986 . . . . . . 7  |-  ( x  =  D  ->  ( A. y  e.  { B ,  C ,  D }  -.  y R x  <->  A. y  e.  { B ,  C ,  D }  -.  y R D ) )
2518, 21, 24rextpg 4237 . . . . . 6  |-  ( ( B  e.  A  /\  C  e.  A  /\  D  e.  A )  ->  ( E. x  e. 
{ B ,  C ,  D } A. y  e.  { B ,  C ,  D }  -.  y R x  <->  ( A. y  e.  { B ,  C ,  D }  -.  y R B  \/  A. y  e.  { B ,  C ,  D }  -.  y R C  \/  A. y  e.  { B ,  C ,  D }  -.  y R D ) ) )
2625adantl 482 . . . . 5  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  ( E. x  e.  { B ,  C ,  D } A. y  e.  { B ,  C ,  D }  -.  y R x  <->  ( A. y  e.  { B ,  C ,  D }  -.  y R B  \/  A. y  e.  { B ,  C ,  D }  -.  y R C  \/  A. y  e.  { B ,  C ,  D }  -.  y R D ) ) )
2715, 26mpbid 222 . . . 4  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  ( A. y  e.  { B ,  C ,  D }  -.  y R B  \/  A. y  e.  { B ,  C ,  D }  -.  y R C  \/  A. y  e.  { B ,  C ,  D }  -.  y R D ) )
28 snsstp3 4349 . . . . . . 7  |-  { D }  C_  { B ,  C ,  D }
29 snssg 4327 . . . . . . . 8  |-  ( D  e.  A  ->  ( D  e.  { B ,  C ,  D }  <->  { D }  C_  { B ,  C ,  D }
) )
309, 29syl 17 . . . . . . 7  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  ( D  e.  { B ,  C ,  D }  <->  { D }  C_  { B ,  C ,  D }
) )
3128, 30mpbiri 248 . . . . . 6  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  D  e.  { B ,  C ,  D } )
32 breq1 4656 . . . . . . . 8  |-  ( y  =  D  ->  (
y R B  <->  D R B ) )
3332notbid 308 . . . . . . 7  |-  ( y  =  D  ->  ( -.  y R B  <->  -.  D R B ) )
3433rspcv 3305 . . . . . 6  |-  ( D  e.  { B ,  C ,  D }  ->  ( A. y  e. 
{ B ,  C ,  D }  -.  y R B  ->  -.  D R B ) )
3531, 34syl 17 . . . . 5  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  ( A. y  e.  { B ,  C ,  D }  -.  y R B  ->  -.  D R B ) )
36 snsstp1 4347 . . . . . . 7  |-  { B }  C_  { B ,  C ,  D }
37 snssg 4327 . . . . . . . 8  |-  ( B  e.  A  ->  ( B  e.  { B ,  C ,  D }  <->  { B }  C_  { B ,  C ,  D }
) )
385, 37syl 17 . . . . . . 7  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  ( B  e.  { B ,  C ,  D }  <->  { B }  C_  { B ,  C ,  D }
) )
3936, 38mpbiri 248 . . . . . 6  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  B  e.  { B ,  C ,  D } )
40 breq1 4656 . . . . . . . 8  |-  ( y  =  B  ->  (
y R C  <->  B R C ) )
4140notbid 308 . . . . . . 7  |-  ( y  =  B  ->  ( -.  y R C  <->  -.  B R C ) )
4241rspcv 3305 . . . . . 6  |-  ( B  e.  { B ,  C ,  D }  ->  ( A. y  e. 
{ B ,  C ,  D }  -.  y R C  ->  -.  B R C ) )
4339, 42syl 17 . . . . 5  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  ( A. y  e.  { B ,  C ,  D }  -.  y R C  ->  -.  B R C ) )
44 snsstp2 4348 . . . . . . 7  |-  { C }  C_  { B ,  C ,  D }
45 snssg 4327 . . . . . . . 8  |-  ( C  e.  A  ->  ( C  e.  { B ,  C ,  D }  <->  { C }  C_  { B ,  C ,  D }
) )
466, 45syl 17 . . . . . . 7  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  ( C  e.  { B ,  C ,  D }  <->  { C }  C_  { B ,  C ,  D }
) )
4744, 46mpbiri 248 . . . . . 6  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  C  e.  { B ,  C ,  D } )
48 breq1 4656 . . . . . . . 8  |-  ( y  =  C  ->  (
y R D  <->  C R D ) )
4948notbid 308 . . . . . . 7  |-  ( y  =  C  ->  ( -.  y R D  <->  -.  C R D ) )
5049rspcv 3305 . . . . . 6  |-  ( C  e.  { B ,  C ,  D }  ->  ( A. y  e. 
{ B ,  C ,  D }  -.  y R D  ->  -.  C R D ) )
5147, 50syl 17 . . . . 5  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  ( A. y  e.  { B ,  C ,  D }  -.  y R D  ->  -.  C R D ) )
5235, 43, 513orim123d 1407 . . . 4  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  (
( A. y  e. 
{ B ,  C ,  D }  -.  y R B  \/  A. y  e.  { B ,  C ,  D }  -.  y R C  \/  A. y  e.  { B ,  C ,  D }  -.  y R D )  ->  ( -.  D R B  \/  -.  B R C  \/  -.  C R D ) ) )
5327, 52mpd 15 . . 3  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  ( -.  D R B  \/  -.  B R C  \/  -.  C R D ) )
54 3ianor 1055 . . 3  |-  ( -.  ( D R B  /\  B R C  /\  C R D )  <->  ( -.  D R B  \/  -.  B R C  \/  -.  C R D ) )
5553, 54sylibr 224 . 2  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  -.  ( D R B  /\  B R C  /\  C R D ) )
56 3anrot 1043 . 2  |-  ( ( D R B  /\  B R C  /\  C R D )  <->  ( B R C  /\  C R D  /\  D R B ) )
5755, 56sylnib 318 1  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  -.  ( B R C  /\  C R D  /\  D R B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    \/ w3o 1036    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    u. cun 3572    C_ wss 3574   (/)c0 3915   {csn 4177   {cpr 4179   {ctp 4181   class class class wbr 4653    Fr wfr 5070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-fr 5073
This theorem is referenced by:  epne3  6980  dfwe2  6981
  Copyright terms: Public domain W3C validator