MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grothprimlem Structured version   Visualization version   GIF version

Theorem grothprimlem 9655
Description: Lemma for grothprim 9656. Expand the membership of an unordered pair into primitives. (Contributed by NM, 29-Mar-2007.)
Assertion
Ref Expression
grothprimlem ({𝑢, 𝑣} ∈ 𝑤 ↔ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))
Distinct variable group:   𝑤,𝑣,𝑢,,𝑔

Proof of Theorem grothprimlem
StepHypRef Expression
1 dfpr2 4195 . . 3 {𝑢, 𝑣} = { ∣ ( = 𝑢 = 𝑣)}
21eleq1i 2692 . 2 ({𝑢, 𝑣} ∈ 𝑤 ↔ { ∣ ( = 𝑢 = 𝑣)} ∈ 𝑤)
3 clabel 2749 . 2 ({ ∣ ( = 𝑢 = 𝑣)} ∈ 𝑤 ↔ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))
42, 3bitri 264 1 ({𝑢, 𝑣} ∈ 𝑤 ↔ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wo 383  wa 384  wal 1481  wex 1704  wcel 1990  {cab 2608  {cpr 4179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-un 3579  df-sn 4178  df-pr 4180
This theorem is referenced by:  grothprim  9656
  Copyright terms: Public domain W3C validator