MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grprinvlem Structured version   Visualization version   GIF version

Theorem grprinvlem 6872
Description: Lemma for grprinvd 6873. (Contributed by NM, 9-Aug-2013.)
Hypotheses
Ref Expression
grprinvlem.c ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
grprinvlem.o (𝜑𝑂𝐵)
grprinvlem.i ((𝜑𝑥𝐵) → (𝑂 + 𝑥) = 𝑥)
grprinvlem.a ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
grprinvlem.n ((𝜑𝑥𝐵) → ∃𝑦𝐵 (𝑦 + 𝑥) = 𝑂)
grprinvlem.x ((𝜑𝜓) → 𝑋𝐵)
grprinvlem.e ((𝜑𝜓) → (𝑋 + 𝑋) = 𝑋)
Assertion
Ref Expression
grprinvlem ((𝜑𝜓) → 𝑋 = 𝑂)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐵   𝑥,𝑂,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥, + ,𝑦,𝑧   𝑦,𝑋,𝑧   𝜓,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑧)   𝑋(𝑥)

Proof of Theorem grprinvlem
Dummy variables 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grprinvlem.n . . . . 5 ((𝜑𝑥𝐵) → ∃𝑦𝐵 (𝑦 + 𝑥) = 𝑂)
21ralrimiva 2966 . . . 4 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑦 + 𝑥) = 𝑂)
3 oveq2 6658 . . . . . . 7 (𝑥 = 𝑧 → (𝑦 + 𝑥) = (𝑦 + 𝑧))
43eqeq1d 2624 . . . . . 6 (𝑥 = 𝑧 → ((𝑦 + 𝑥) = 𝑂 ↔ (𝑦 + 𝑧) = 𝑂))
54rexbidv 3052 . . . . 5 (𝑥 = 𝑧 → (∃𝑦𝐵 (𝑦 + 𝑥) = 𝑂 ↔ ∃𝑦𝐵 (𝑦 + 𝑧) = 𝑂))
65cbvralv 3171 . . . 4 (∀𝑥𝐵𝑦𝐵 (𝑦 + 𝑥) = 𝑂 ↔ ∀𝑧𝐵𝑦𝐵 (𝑦 + 𝑧) = 𝑂)
72, 6sylib 208 . . 3 (𝜑 → ∀𝑧𝐵𝑦𝐵 (𝑦 + 𝑧) = 𝑂)
8 grprinvlem.x . . 3 ((𝜑𝜓) → 𝑋𝐵)
9 oveq2 6658 . . . . . 6 (𝑧 = 𝑋 → (𝑦 + 𝑧) = (𝑦 + 𝑋))
109eqeq1d 2624 . . . . 5 (𝑧 = 𝑋 → ((𝑦 + 𝑧) = 𝑂 ↔ (𝑦 + 𝑋) = 𝑂))
1110rexbidv 3052 . . . 4 (𝑧 = 𝑋 → (∃𝑦𝐵 (𝑦 + 𝑧) = 𝑂 ↔ ∃𝑦𝐵 (𝑦 + 𝑋) = 𝑂))
1211rspccva 3308 . . 3 ((∀𝑧𝐵𝑦𝐵 (𝑦 + 𝑧) = 𝑂𝑋𝐵) → ∃𝑦𝐵 (𝑦 + 𝑋) = 𝑂)
137, 8, 12syl2an2r 876 . 2 ((𝜑𝜓) → ∃𝑦𝐵 (𝑦 + 𝑋) = 𝑂)
14 grprinvlem.e . . . . 5 ((𝜑𝜓) → (𝑋 + 𝑋) = 𝑋)
1514oveq2d 6666 . . . 4 ((𝜑𝜓) → (𝑦 + (𝑋 + 𝑋)) = (𝑦 + 𝑋))
1615adantr 481 . . 3 (((𝜑𝜓) ∧ (𝑦𝐵 ∧ (𝑦 + 𝑋) = 𝑂)) → (𝑦 + (𝑋 + 𝑋)) = (𝑦 + 𝑋))
17 simprr 796 . . . . 5 (((𝜑𝜓) ∧ (𝑦𝐵 ∧ (𝑦 + 𝑋) = 𝑂)) → (𝑦 + 𝑋) = 𝑂)
1817oveq1d 6665 . . . 4 (((𝜑𝜓) ∧ (𝑦𝐵 ∧ (𝑦 + 𝑋) = 𝑂)) → ((𝑦 + 𝑋) + 𝑋) = (𝑂 + 𝑋))
19 grprinvlem.a . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
2019caovassg 6832 . . . . . 6 ((𝜑 ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤)))
2120ad4ant14 1293 . . . . 5 ((((𝜑𝜓) ∧ (𝑦𝐵 ∧ (𝑦 + 𝑋) = 𝑂)) ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤)))
22 simprl 794 . . . . 5 (((𝜑𝜓) ∧ (𝑦𝐵 ∧ (𝑦 + 𝑋) = 𝑂)) → 𝑦𝐵)
238adantr 481 . . . . 5 (((𝜑𝜓) ∧ (𝑦𝐵 ∧ (𝑦 + 𝑋) = 𝑂)) → 𝑋𝐵)
2421, 22, 23, 23caovassd 6833 . . . 4 (((𝜑𝜓) ∧ (𝑦𝐵 ∧ (𝑦 + 𝑋) = 𝑂)) → ((𝑦 + 𝑋) + 𝑋) = (𝑦 + (𝑋 + 𝑋)))
25 oveq2 6658 . . . . . . 7 (𝑦 = 𝑋 → (𝑂 + 𝑦) = (𝑂 + 𝑋))
26 id 22 . . . . . . 7 (𝑦 = 𝑋𝑦 = 𝑋)
2725, 26eqeq12d 2637 . . . . . 6 (𝑦 = 𝑋 → ((𝑂 + 𝑦) = 𝑦 ↔ (𝑂 + 𝑋) = 𝑋))
28 grprinvlem.i . . . . . . . . 9 ((𝜑𝑥𝐵) → (𝑂 + 𝑥) = 𝑥)
2928ralrimiva 2966 . . . . . . . 8 (𝜑 → ∀𝑥𝐵 (𝑂 + 𝑥) = 𝑥)
30 oveq2 6658 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑂 + 𝑥) = (𝑂 + 𝑦))
31 id 22 . . . . . . . . . 10 (𝑥 = 𝑦𝑥 = 𝑦)
3230, 31eqeq12d 2637 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝑂 + 𝑥) = 𝑥 ↔ (𝑂 + 𝑦) = 𝑦))
3332cbvralv 3171 . . . . . . . 8 (∀𝑥𝐵 (𝑂 + 𝑥) = 𝑥 ↔ ∀𝑦𝐵 (𝑂 + 𝑦) = 𝑦)
3429, 33sylib 208 . . . . . . 7 (𝜑 → ∀𝑦𝐵 (𝑂 + 𝑦) = 𝑦)
3534adantr 481 . . . . . 6 ((𝜑𝜓) → ∀𝑦𝐵 (𝑂 + 𝑦) = 𝑦)
3627, 35, 8rspcdva 3316 . . . . 5 ((𝜑𝜓) → (𝑂 + 𝑋) = 𝑋)
3736adantr 481 . . . 4 (((𝜑𝜓) ∧ (𝑦𝐵 ∧ (𝑦 + 𝑋) = 𝑂)) → (𝑂 + 𝑋) = 𝑋)
3818, 24, 373eqtr3d 2664 . . 3 (((𝜑𝜓) ∧ (𝑦𝐵 ∧ (𝑦 + 𝑋) = 𝑂)) → (𝑦 + (𝑋 + 𝑋)) = 𝑋)
3916, 38, 173eqtr3d 2664 . 2 (((𝜑𝜓) ∧ (𝑦𝐵 ∧ (𝑦 + 𝑋) = 𝑂)) → 𝑋 = 𝑂)
4013, 39rexlimddv 3035 1 ((𝜑𝜓) → 𝑋 = 𝑂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913  (class class class)co 6650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653
This theorem is referenced by:  grprinvd  6873
  Copyright terms: Public domain W3C validator