MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grprinvlem Structured version   Visualization version   Unicode version

Theorem grprinvlem 6872
Description: Lemma for grprinvd 6873. (Contributed by NM, 9-Aug-2013.)
Hypotheses
Ref Expression
grprinvlem.c  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( x  .+  y )  e.  B
)
grprinvlem.o  |-  ( ph  ->  O  e.  B )
grprinvlem.i  |-  ( (
ph  /\  x  e.  B )  ->  ( O  .+  x )  =  x )
grprinvlem.a  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
grprinvlem.n  |-  ( (
ph  /\  x  e.  B )  ->  E. y  e.  B  ( y  .+  x )  =  O )
grprinvlem.x  |-  ( (
ph  /\  ps )  ->  X  e.  B )
grprinvlem.e  |-  ( (
ph  /\  ps )  ->  ( X  .+  X
)  =  X )
Assertion
Ref Expression
grprinvlem  |-  ( (
ph  /\  ps )  ->  X  =  O )
Distinct variable groups:    x, y,
z, B    x, O, y, z    ph, x, y, z    x,  .+ , y, z   
y, X, z    ps, y
Allowed substitution hints:    ps( x, z)    X( x)

Proof of Theorem grprinvlem
Dummy variables  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grprinvlem.n . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  E. y  e.  B  ( y  .+  x )  =  O )
21ralrimiva 2966 . . . 4  |-  ( ph  ->  A. x  e.  B  E. y  e.  B  ( y  .+  x
)  =  O )
3 oveq2 6658 . . . . . . 7  |-  ( x  =  z  ->  (
y  .+  x )  =  ( y  .+  z ) )
43eqeq1d 2624 . . . . . 6  |-  ( x  =  z  ->  (
( y  .+  x
)  =  O  <->  ( y  .+  z )  =  O ) )
54rexbidv 3052 . . . . 5  |-  ( x  =  z  ->  ( E. y  e.  B  ( y  .+  x
)  =  O  <->  E. y  e.  B  ( y  .+  z )  =  O ) )
65cbvralv 3171 . . . 4  |-  ( A. x  e.  B  E. y  e.  B  (
y  .+  x )  =  O  <->  A. z  e.  B  E. y  e.  B  ( y  .+  z
)  =  O )
72, 6sylib 208 . . 3  |-  ( ph  ->  A. z  e.  B  E. y  e.  B  ( y  .+  z
)  =  O )
8 grprinvlem.x . . 3  |-  ( (
ph  /\  ps )  ->  X  e.  B )
9 oveq2 6658 . . . . . 6  |-  ( z  =  X  ->  (
y  .+  z )  =  ( y  .+  X ) )
109eqeq1d 2624 . . . . 5  |-  ( z  =  X  ->  (
( y  .+  z
)  =  O  <->  ( y  .+  X )  =  O ) )
1110rexbidv 3052 . . . 4  |-  ( z  =  X  ->  ( E. y  e.  B  ( y  .+  z
)  =  O  <->  E. y  e.  B  ( y  .+  X )  =  O ) )
1211rspccva 3308 . . 3  |-  ( ( A. z  e.  B  E. y  e.  B  ( y  .+  z
)  =  O  /\  X  e.  B )  ->  E. y  e.  B  ( y  .+  X
)  =  O )
137, 8, 12syl2an2r 876 . 2  |-  ( (
ph  /\  ps )  ->  E. y  e.  B  ( y  .+  X
)  =  O )
14 grprinvlem.e . . . . 5  |-  ( (
ph  /\  ps )  ->  ( X  .+  X
)  =  X )
1514oveq2d 6666 . . . 4  |-  ( (
ph  /\  ps )  ->  ( y  .+  ( X  .+  X ) )  =  ( y  .+  X ) )
1615adantr 481 . . 3  |-  ( ( ( ph  /\  ps )  /\  ( y  e.  B  /\  ( y 
.+  X )  =  O ) )  -> 
( y  .+  ( X  .+  X ) )  =  ( y  .+  X ) )
17 simprr 796 . . . . 5  |-  ( ( ( ph  /\  ps )  /\  ( y  e.  B  /\  ( y 
.+  X )  =  O ) )  -> 
( y  .+  X
)  =  O )
1817oveq1d 6665 . . . 4  |-  ( ( ( ph  /\  ps )  /\  ( y  e.  B  /\  ( y 
.+  X )  =  O ) )  -> 
( ( y  .+  X )  .+  X
)  =  ( O 
.+  X ) )
19 grprinvlem.a . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
2019caovassg 6832 . . . . . 6  |-  ( (
ph  /\  ( u  e.  B  /\  v  e.  B  /\  w  e.  B ) )  -> 
( ( u  .+  v )  .+  w
)  =  ( u 
.+  ( v  .+  w ) ) )
2120ad4ant14 1293 . . . . 5  |-  ( ( ( ( ph  /\  ps )  /\  (
y  e.  B  /\  ( y  .+  X
)  =  O ) )  /\  ( u  e.  B  /\  v  e.  B  /\  w  e.  B ) )  -> 
( ( u  .+  v )  .+  w
)  =  ( u 
.+  ( v  .+  w ) ) )
22 simprl 794 . . . . 5  |-  ( ( ( ph  /\  ps )  /\  ( y  e.  B  /\  ( y 
.+  X )  =  O ) )  -> 
y  e.  B )
238adantr 481 . . . . 5  |-  ( ( ( ph  /\  ps )  /\  ( y  e.  B  /\  ( y 
.+  X )  =  O ) )  ->  X  e.  B )
2421, 22, 23, 23caovassd 6833 . . . 4  |-  ( ( ( ph  /\  ps )  /\  ( y  e.  B  /\  ( y 
.+  X )  =  O ) )  -> 
( ( y  .+  X )  .+  X
)  =  ( y 
.+  ( X  .+  X ) ) )
25 oveq2 6658 . . . . . . 7  |-  ( y  =  X  ->  ( O  .+  y )  =  ( O  .+  X
) )
26 id 22 . . . . . . 7  |-  ( y  =  X  ->  y  =  X )
2725, 26eqeq12d 2637 . . . . . 6  |-  ( y  =  X  ->  (
( O  .+  y
)  =  y  <->  ( O  .+  X )  =  X ) )
28 grprinvlem.i . . . . . . . . 9  |-  ( (
ph  /\  x  e.  B )  ->  ( O  .+  x )  =  x )
2928ralrimiva 2966 . . . . . . . 8  |-  ( ph  ->  A. x  e.  B  ( O  .+  x )  =  x )
30 oveq2 6658 . . . . . . . . . 10  |-  ( x  =  y  ->  ( O  .+  x )  =  ( O  .+  y
) )
31 id 22 . . . . . . . . . 10  |-  ( x  =  y  ->  x  =  y )
3230, 31eqeq12d 2637 . . . . . . . . 9  |-  ( x  =  y  ->  (
( O  .+  x
)  =  x  <->  ( O  .+  y )  =  y ) )
3332cbvralv 3171 . . . . . . . 8  |-  ( A. x  e.  B  ( O  .+  x )  =  x  <->  A. y  e.  B  ( O  .+  y )  =  y )
3429, 33sylib 208 . . . . . . 7  |-  ( ph  ->  A. y  e.  B  ( O  .+  y )  =  y )
3534adantr 481 . . . . . 6  |-  ( (
ph  /\  ps )  ->  A. y  e.  B  ( O  .+  y )  =  y )
3627, 35, 8rspcdva 3316 . . . . 5  |-  ( (
ph  /\  ps )  ->  ( O  .+  X
)  =  X )
3736adantr 481 . . . 4  |-  ( ( ( ph  /\  ps )  /\  ( y  e.  B  /\  ( y 
.+  X )  =  O ) )  -> 
( O  .+  X
)  =  X )
3818, 24, 373eqtr3d 2664 . . 3  |-  ( ( ( ph  /\  ps )  /\  ( y  e.  B  /\  ( y 
.+  X )  =  O ) )  -> 
( y  .+  ( X  .+  X ) )  =  X )
3916, 38, 173eqtr3d 2664 . 2  |-  ( ( ( ph  /\  ps )  /\  ( y  e.  B  /\  ( y 
.+  X )  =  O ) )  ->  X  =  O )
4013, 39rexlimddv 3035 1  |-  ( (
ph  /\  ps )  ->  X  =  O )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913  (class class class)co 6650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653
This theorem is referenced by:  grprinvd  6873
  Copyright terms: Public domain W3C validator