MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grusn Structured version   Visualization version   GIF version

Theorem grusn 9626
Description: A Grothendieck universe contains the singletons of its elements. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
grusn ((𝑈 ∈ Univ ∧ 𝐴𝑈) → {𝐴} ∈ 𝑈)

Proof of Theorem grusn
StepHypRef Expression
1 dfsn2 4190 . 2 {𝐴} = {𝐴, 𝐴}
2 grupr 9619 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐴𝑈) → {𝐴, 𝐴} ∈ 𝑈)
323anidm23 1385 . 2 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → {𝐴, 𝐴} ∈ 𝑈)
41, 3syl5eqel 2705 1 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → {𝐴} ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wcel 1990  {csn 4177  {cpr 4179  Univcgru 9612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-tr 4753  df-iota 5851  df-fv 5896  df-ov 6653  df-gru 9613
This theorem is referenced by:  gruop  9627
  Copyright terms: Public domain W3C validator