| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hbae-o | Structured version Visualization version GIF version | ||
| Description: All variables are effectively bound in an identical variable specifier. Version of hbae 2315 using ax-c11 34172. (Contributed by NM, 13-May-1993.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hbae-o | ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑧∀𝑥 𝑥 = 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-c5 34168 | . . . . 5 ⊢ (∀𝑥 𝑥 = 𝑦 → 𝑥 = 𝑦) | |
| 2 | ax-c9 34175 | . . . . 5 ⊢ (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) | |
| 3 | 1, 2 | syl7 74 | . . . 4 ⊢ (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) |
| 4 | ax-c11 34172 | . . . . 5 ⊢ (∀𝑥 𝑥 = 𝑧 → (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) | |
| 5 | 4 | aecoms-o 34187 | . . . 4 ⊢ (∀𝑧 𝑧 = 𝑥 → (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) |
| 6 | ax-c11 34172 | . . . . . . 7 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑥 = 𝑦)) | |
| 7 | 6 | pm2.43i 52 | . . . . . 6 ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑥 = 𝑦) |
| 8 | ax-c11 34172 | . . . . . 6 ⊢ (∀𝑦 𝑦 = 𝑧 → (∀𝑦 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) | |
| 9 | 7, 8 | syl5 34 | . . . . 5 ⊢ (∀𝑦 𝑦 = 𝑧 → (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) |
| 10 | 9 | aecoms-o 34187 | . . . 4 ⊢ (∀𝑧 𝑧 = 𝑦 → (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) |
| 11 | 3, 5, 10 | pm2.61ii 177 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦) |
| 12 | 11 | axc4i-o 34183 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑥∀𝑧 𝑥 = 𝑦) |
| 13 | ax-11 2034 | . 2 ⊢ (∀𝑥∀𝑧 𝑥 = 𝑦 → ∀𝑧∀𝑥 𝑥 = 𝑦) | |
| 14 | 12, 13 | syl 17 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑧∀𝑥 𝑥 = 𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-11 2034 ax-c5 34168 ax-c4 34169 ax-c7 34170 ax-c10 34171 ax-c11 34172 ax-c9 34175 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 |
| This theorem is referenced by: dral1-o 34189 hbnae-o 34213 dral2-o 34215 aev-o 34216 |
| Copyright terms: Public domain | W3C validator |