![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl7 | Structured version Visualization version GIF version |
Description: A syllogism rule of inference. The first premise is used to replace the third antecedent of the second premise. (Contributed by NM, 12-Jan-1993.) (Proof shortened by Wolf Lammen, 3-Aug-2012.) |
Ref | Expression |
---|---|
syl7.1 | ⊢ (𝜑 → 𝜓) |
syl7.2 | ⊢ (𝜒 → (𝜃 → (𝜓 → 𝜏))) |
Ref | Expression |
---|---|
syl7 | ⊢ (𝜒 → (𝜃 → (𝜑 → 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl7.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜒 → (𝜑 → 𝜓)) |
3 | syl7.2 | . 2 ⊢ (𝜒 → (𝜃 → (𝜓 → 𝜏))) | |
4 | 2, 3 | syl5d 73 | 1 ⊢ (𝜒 → (𝜃 → (𝜑 → 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: syl7bi 245 syl3an3 1361 ax12 2304 hbae 2315 ax12OLD 2341 tz7.7 5749 fvmptt 6300 f1oweALT 7152 wfrlem12 7426 nneneq 8143 pr2nelem 8827 cfcoflem 9094 nnunb 11288 ndvdssub 15133 lsmcv 19141 gsummoncoe1 19674 uvcendim 20186 2ndcsep 21262 atcvat4i 29256 mdsymlem5 29266 sumdmdii 29274 dfon2lem6 31693 frrlem11 31792 colineardim1 32168 bj-hbaeb2 32805 hbae-o 34188 ax12fromc15 34190 cvrat4 34729 llncvrlpln2 34843 lplncvrlvol2 34901 dihmeetlem3N 36594 eel2122old 38943 |
Copyright terms: Public domain | W3C validator |