| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hlobn | Structured version Visualization version GIF version | ||
| Description: Every complex Hilbert space is a complex Banach space. (Contributed by Steve Rodriguez, 28-Apr-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hlobn | ⊢ (𝑈 ∈ CHilOLD → 𝑈 ∈ CBan) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ishlo 27743 | . 2 ⊢ (𝑈 ∈ CHilOLD ↔ (𝑈 ∈ CBan ∧ 𝑈 ∈ CPreHilOLD)) | |
| 2 | 1 | simplbi 476 | 1 ⊢ (𝑈 ∈ CHilOLD → 𝑈 ∈ CBan) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 1990 CPreHilOLDccphlo 27667 CBanccbn 27718 CHilOLDchlo 27741 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-in 3581 df-hlo 27742 |
| This theorem is referenced by: hlrel 27746 hlnv 27747 hlcmet 27750 htthlem 27774 |
| Copyright terms: Public domain | W3C validator |