Proof of Theorem htthlem
| Step | Hyp | Ref
| Expression |
| 1 | | htthlem.8 |
. 2
⊢ (𝜑 → 𝑇 ∈ 𝐿) |
| 2 | | htthlem.6 |
. . . . . . . . . 10
⊢ 𝑈 ∈
CHilOLD |
| 3 | 2 | hlnvi 27748 |
. . . . . . . . 9
⊢ 𝑈 ∈ NrmCVec |
| 4 | | htth.1 |
. . . . . . . . . . . . 13
⊢ 𝑋 = (BaseSet‘𝑈) |
| 5 | | htth.3 |
. . . . . . . . . . . . 13
⊢ 𝐿 = (𝑈 LnOp 𝑈) |
| 6 | 4, 4, 5 | lnof 27610 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑈 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → 𝑇:𝑋⟶𝑋) |
| 7 | 3, 3, 6 | mp3an12 1414 |
. . . . . . . . . . 11
⊢ (𝑇 ∈ 𝐿 → 𝑇:𝑋⟶𝑋) |
| 8 | 1, 7 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑇:𝑋⟶𝑋) |
| 9 | 8 | ffvelrnda 6359 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑇‘𝑥) ∈ 𝑋) |
| 10 | | htthlem.5 |
. . . . . . . . . 10
⊢ 𝑁 =
(normCV‘𝑈) |
| 11 | 4, 10 | nvcl 27516 |
. . . . . . . . 9
⊢ ((𝑈 ∈ NrmCVec ∧ (𝑇‘𝑥) ∈ 𝑋) → (𝑁‘(𝑇‘𝑥)) ∈ ℝ) |
| 12 | 3, 9, 11 | sylancr 695 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑁‘(𝑇‘𝑥)) ∈ ℝ) |
| 13 | 8 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (𝑇‘𝑧) ∈ 𝑋) |
| 14 | | htth.2 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑃 =
(·𝑖OLD‘𝑈) |
| 15 | | hlph 27745 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑈 ∈ CHilOLD
→ 𝑈 ∈
CPreHilOLD) |
| 16 | 2, 15 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑈 ∈
CPreHilOLD |
| 17 | | htthlem.7 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑊 = 〈〈 + , ·
〉, abs〉 |
| 18 | | eqid 2622 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑈 BLnOp 𝑊) = (𝑈 BLnOp 𝑊) |
| 19 | | eqid 2622 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 ∈ 𝑋 ↦ (𝑤𝑃(𝑇‘𝑧))) = (𝑤 ∈ 𝑋 ↦ (𝑤𝑃(𝑇‘𝑧))) |
| 20 | 4, 14, 16, 17, 18, 19 | ipblnfi 27711 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑇‘𝑧) ∈ 𝑋 → (𝑤 ∈ 𝑋 ↦ (𝑤𝑃(𝑇‘𝑧))) ∈ (𝑈 BLnOp 𝑊)) |
| 21 | 13, 20 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (𝑤 ∈ 𝑋 ↦ (𝑤𝑃(𝑇‘𝑧))) ∈ (𝑈 BLnOp 𝑊)) |
| 22 | | htthlem.10 |
. . . . . . . . . . . . . . 15
⊢ 𝐹 = (𝑧 ∈ 𝑋 ↦ (𝑤 ∈ 𝑋 ↦ (𝑤𝑃(𝑇‘𝑧)))) |
| 23 | 21, 22 | fmptd 6385 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐹:𝑋⟶(𝑈 BLnOp 𝑊)) |
| 24 | | ffun 6048 |
. . . . . . . . . . . . . 14
⊢ (𝐹:𝑋⟶(𝑈 BLnOp 𝑊) → Fun 𝐹) |
| 25 | 23, 24 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → Fun 𝐹) |
| 26 | 25 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → Fun 𝐹) |
| 27 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∈ 𝐾 → 𝑤 ∈ 𝐾) |
| 28 | | htthlem.11 |
. . . . . . . . . . . . 13
⊢ 𝐾 = (𝐹 “ {𝑧 ∈ 𝑋 ∣ (𝑁‘𝑧) ≤ 1}) |
| 29 | 27, 28 | syl6eleq 2711 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈ 𝐾 → 𝑤 ∈ (𝐹 “ {𝑧 ∈ 𝑋 ∣ (𝑁‘𝑧) ≤ 1})) |
| 30 | | fvelima 6248 |
. . . . . . . . . . . 12
⊢ ((Fun
𝐹 ∧ 𝑤 ∈ (𝐹 “ {𝑧 ∈ 𝑋 ∣ (𝑁‘𝑧) ≤ 1})) → ∃𝑦 ∈ {𝑧 ∈ 𝑋 ∣ (𝑁‘𝑧) ≤ 1} (𝐹‘𝑦) = 𝑤) |
| 31 | 26, 29, 30 | syl2an 494 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑤 ∈ 𝐾) → ∃𝑦 ∈ {𝑧 ∈ 𝑋 ∣ (𝑁‘𝑧) ≤ 1} (𝐹‘𝑦) = 𝑤) |
| 32 | 31 | ex 450 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑤 ∈ 𝐾 → ∃𝑦 ∈ {𝑧 ∈ 𝑋 ∣ (𝑁‘𝑧) ≤ 1} (𝐹‘𝑦) = 𝑤)) |
| 33 | | fveq2 6191 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑦 → (𝑁‘𝑧) = (𝑁‘𝑦)) |
| 34 | 33 | breq1d 4663 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑦 → ((𝑁‘𝑧) ≤ 1 ↔ (𝑁‘𝑦) ≤ 1)) |
| 35 | 34 | elrab 3363 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ {𝑧 ∈ 𝑋 ∣ (𝑁‘𝑧) ≤ 1} ↔ (𝑦 ∈ 𝑋 ∧ (𝑁‘𝑦) ≤ 1)) |
| 36 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑧 = 𝑦 → (𝑇‘𝑧) = (𝑇‘𝑦)) |
| 37 | 36 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 = 𝑦 → (𝑤𝑃(𝑇‘𝑧)) = (𝑤𝑃(𝑇‘𝑦))) |
| 38 | 37 | mpteq2dv 4745 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 = 𝑦 → (𝑤 ∈ 𝑋 ↦ (𝑤𝑃(𝑇‘𝑧))) = (𝑤 ∈ 𝑋 ↦ (𝑤𝑃(𝑇‘𝑦)))) |
| 39 | 4 | hlex 27754 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑋 ∈ V |
| 40 | 39 | mptex 6486 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 ∈ 𝑋 ↦ (𝑤𝑃(𝑇‘𝑦))) ∈ V |
| 41 | 38, 22, 40 | fvmpt 6282 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ 𝑋 → (𝐹‘𝑦) = (𝑤 ∈ 𝑋 ↦ (𝑤𝑃(𝑇‘𝑦)))) |
| 42 | 41 | fveq1d 6193 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ 𝑋 → ((𝐹‘𝑦)‘𝑥) = ((𝑤 ∈ 𝑋 ↦ (𝑤𝑃(𝑇‘𝑦)))‘𝑥)) |
| 43 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 = 𝑥 → (𝑤𝑃(𝑇‘𝑦)) = (𝑥𝑃(𝑇‘𝑦))) |
| 44 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 ∈ 𝑋 ↦ (𝑤𝑃(𝑇‘𝑦))) = (𝑤 ∈ 𝑋 ↦ (𝑤𝑃(𝑇‘𝑦))) |
| 45 | | ovex 6678 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥𝑃(𝑇‘𝑦)) ∈ V |
| 46 | 43, 44, 45 | fvmpt 6282 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ 𝑋 → ((𝑤 ∈ 𝑋 ↦ (𝑤𝑃(𝑇‘𝑦)))‘𝑥) = (𝑥𝑃(𝑇‘𝑦))) |
| 47 | 42, 46 | sylan9eqr 2678 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → ((𝐹‘𝑦)‘𝑥) = (𝑥𝑃(𝑇‘𝑦))) |
| 48 | 47 | ad2ant2lr 784 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ (𝑁‘𝑦) ≤ 1)) → ((𝐹‘𝑦)‘𝑥) = (𝑥𝑃(𝑇‘𝑦))) |
| 49 | | htthlem.9 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑃(𝑇‘𝑦)) = ((𝑇‘𝑥)𝑃𝑦)) |
| 50 | | rsp2 2936 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑥 ∈
𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑃(𝑇‘𝑦)) = ((𝑇‘𝑥)𝑃𝑦) → ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝑃(𝑇‘𝑦)) = ((𝑇‘𝑥)𝑃𝑦))) |
| 51 | 49, 50 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝑃(𝑇‘𝑦)) = ((𝑇‘𝑥)𝑃𝑦))) |
| 52 | 51 | impl 650 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → (𝑥𝑃(𝑇‘𝑦)) = ((𝑇‘𝑥)𝑃𝑦)) |
| 53 | 52 | adantrr 753 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ (𝑁‘𝑦) ≤ 1)) → (𝑥𝑃(𝑇‘𝑦)) = ((𝑇‘𝑥)𝑃𝑦)) |
| 54 | 48, 53 | eqtrd 2656 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ (𝑁‘𝑦) ≤ 1)) → ((𝐹‘𝑦)‘𝑥) = ((𝑇‘𝑥)𝑃𝑦)) |
| 55 | 54 | fveq2d 6195 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ (𝑁‘𝑦) ≤ 1)) → (abs‘((𝐹‘𝑦)‘𝑥)) = (abs‘((𝑇‘𝑥)𝑃𝑦))) |
| 56 | | simpl 473 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ 𝑋 ∧ (𝑁‘𝑦) ≤ 1) → 𝑦 ∈ 𝑋) |
| 57 | 4, 14 | dipcl 27567 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑈 ∈ NrmCVec ∧ (𝑇‘𝑥) ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → ((𝑇‘𝑥)𝑃𝑦) ∈ ℂ) |
| 58 | 3, 57 | mp3an1 1411 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑇‘𝑥) ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → ((𝑇‘𝑥)𝑃𝑦) ∈ ℂ) |
| 59 | 9, 56, 58 | syl2an 494 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ (𝑁‘𝑦) ≤ 1)) → ((𝑇‘𝑥)𝑃𝑦) ∈ ℂ) |
| 60 | 59 | abscld 14175 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ (𝑁‘𝑦) ≤ 1)) → (abs‘((𝑇‘𝑥)𝑃𝑦)) ∈ ℝ) |
| 61 | 12 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ (𝑁‘𝑦) ≤ 1)) → (𝑁‘(𝑇‘𝑥)) ∈ ℝ) |
| 62 | 4, 10 | nvcl 27516 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑦 ∈ 𝑋) → (𝑁‘𝑦) ∈ ℝ) |
| 63 | 3, 62 | mpan 706 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ 𝑋 → (𝑁‘𝑦) ∈ ℝ) |
| 64 | 63 | ad2antrl 764 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ (𝑁‘𝑦) ≤ 1)) → (𝑁‘𝑦) ∈ ℝ) |
| 65 | 61, 64 | remulcld 10070 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ (𝑁‘𝑦) ≤ 1)) → ((𝑁‘(𝑇‘𝑥)) · (𝑁‘𝑦)) ∈ ℝ) |
| 66 | 4, 10, 14, 16 | sii 27709 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑇‘𝑥) ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (abs‘((𝑇‘𝑥)𝑃𝑦)) ≤ ((𝑁‘(𝑇‘𝑥)) · (𝑁‘𝑦))) |
| 67 | 9, 56, 66 | syl2an 494 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ (𝑁‘𝑦) ≤ 1)) → (abs‘((𝑇‘𝑥)𝑃𝑦)) ≤ ((𝑁‘(𝑇‘𝑥)) · (𝑁‘𝑦))) |
| 68 | | 1red 10055 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ (𝑁‘𝑦) ≤ 1)) → 1 ∈
ℝ) |
| 69 | 4, 10 | nvge0 27528 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑈 ∈ NrmCVec ∧ (𝑇‘𝑥) ∈ 𝑋) → 0 ≤ (𝑁‘(𝑇‘𝑥))) |
| 70 | 3, 9, 69 | sylancr 695 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 0 ≤ (𝑁‘(𝑇‘𝑥))) |
| 71 | 12, 70 | jca 554 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑁‘(𝑇‘𝑥)) ∈ ℝ ∧ 0 ≤ (𝑁‘(𝑇‘𝑥)))) |
| 72 | 71 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ (𝑁‘𝑦) ≤ 1)) → ((𝑁‘(𝑇‘𝑥)) ∈ ℝ ∧ 0 ≤ (𝑁‘(𝑇‘𝑥)))) |
| 73 | | simprr 796 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ (𝑁‘𝑦) ≤ 1)) → (𝑁‘𝑦) ≤ 1) |
| 74 | | lemul2a 10878 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑁‘𝑦) ∈ ℝ ∧ 1 ∈ ℝ ∧
((𝑁‘(𝑇‘𝑥)) ∈ ℝ ∧ 0 ≤ (𝑁‘(𝑇‘𝑥)))) ∧ (𝑁‘𝑦) ≤ 1) → ((𝑁‘(𝑇‘𝑥)) · (𝑁‘𝑦)) ≤ ((𝑁‘(𝑇‘𝑥)) · 1)) |
| 75 | 64, 68, 72, 73, 74 | syl31anc 1329 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ (𝑁‘𝑦) ≤ 1)) → ((𝑁‘(𝑇‘𝑥)) · (𝑁‘𝑦)) ≤ ((𝑁‘(𝑇‘𝑥)) · 1)) |
| 76 | 61 | recnd 10068 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ (𝑁‘𝑦) ≤ 1)) → (𝑁‘(𝑇‘𝑥)) ∈ ℂ) |
| 77 | 76 | mulid1d 10057 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ (𝑁‘𝑦) ≤ 1)) → ((𝑁‘(𝑇‘𝑥)) · 1) = (𝑁‘(𝑇‘𝑥))) |
| 78 | 75, 77 | breqtrd 4679 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ (𝑁‘𝑦) ≤ 1)) → ((𝑁‘(𝑇‘𝑥)) · (𝑁‘𝑦)) ≤ (𝑁‘(𝑇‘𝑥))) |
| 79 | 60, 65, 61, 67, 78 | letrd 10194 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ (𝑁‘𝑦) ≤ 1)) → (abs‘((𝑇‘𝑥)𝑃𝑦)) ≤ (𝑁‘(𝑇‘𝑥))) |
| 80 | 55, 79 | eqbrtrd 4675 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ (𝑁‘𝑦) ≤ 1)) → (abs‘((𝐹‘𝑦)‘𝑥)) ≤ (𝑁‘(𝑇‘𝑥))) |
| 81 | 35, 80 | sylan2b 492 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ {𝑧 ∈ 𝑋 ∣ (𝑁‘𝑧) ≤ 1}) → (abs‘((𝐹‘𝑦)‘𝑥)) ≤ (𝑁‘(𝑇‘𝑥))) |
| 82 | | fveq1 6190 |
. . . . . . . . . . . . . 14
⊢ ((𝐹‘𝑦) = 𝑤 → ((𝐹‘𝑦)‘𝑥) = (𝑤‘𝑥)) |
| 83 | 82 | fveq2d 6195 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘𝑦) = 𝑤 → (abs‘((𝐹‘𝑦)‘𝑥)) = (abs‘(𝑤‘𝑥))) |
| 84 | 83 | breq1d 4663 |
. . . . . . . . . . . 12
⊢ ((𝐹‘𝑦) = 𝑤 → ((abs‘((𝐹‘𝑦)‘𝑥)) ≤ (𝑁‘(𝑇‘𝑥)) ↔ (abs‘(𝑤‘𝑥)) ≤ (𝑁‘(𝑇‘𝑥)))) |
| 85 | 81, 84 | syl5ibcom 235 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ {𝑧 ∈ 𝑋 ∣ (𝑁‘𝑧) ≤ 1}) → ((𝐹‘𝑦) = 𝑤 → (abs‘(𝑤‘𝑥)) ≤ (𝑁‘(𝑇‘𝑥)))) |
| 86 | 85 | rexlimdva 3031 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (∃𝑦 ∈ {𝑧 ∈ 𝑋 ∣ (𝑁‘𝑧) ≤ 1} (𝐹‘𝑦) = 𝑤 → (abs‘(𝑤‘𝑥)) ≤ (𝑁‘(𝑇‘𝑥)))) |
| 87 | 32, 86 | syld 47 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑤 ∈ 𝐾 → (abs‘(𝑤‘𝑥)) ≤ (𝑁‘(𝑇‘𝑥)))) |
| 88 | 87 | ralrimiv 2965 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∀𝑤 ∈ 𝐾 (abs‘(𝑤‘𝑥)) ≤ (𝑁‘(𝑇‘𝑥))) |
| 89 | | breq2 4657 |
. . . . . . . . . 10
⊢ (𝑧 = (𝑁‘(𝑇‘𝑥)) → ((abs‘(𝑤‘𝑥)) ≤ 𝑧 ↔ (abs‘(𝑤‘𝑥)) ≤ (𝑁‘(𝑇‘𝑥)))) |
| 90 | 89 | ralbidv 2986 |
. . . . . . . . 9
⊢ (𝑧 = (𝑁‘(𝑇‘𝑥)) → (∀𝑤 ∈ 𝐾 (abs‘(𝑤‘𝑥)) ≤ 𝑧 ↔ ∀𝑤 ∈ 𝐾 (abs‘(𝑤‘𝑥)) ≤ (𝑁‘(𝑇‘𝑥)))) |
| 91 | 90 | rspcev 3309 |
. . . . . . . 8
⊢ (((𝑁‘(𝑇‘𝑥)) ∈ ℝ ∧ ∀𝑤 ∈ 𝐾 (abs‘(𝑤‘𝑥)) ≤ (𝑁‘(𝑇‘𝑥))) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ 𝐾 (abs‘(𝑤‘𝑥)) ≤ 𝑧) |
| 92 | 12, 88, 91 | syl2anc 693 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ 𝐾 (abs‘(𝑤‘𝑥)) ≤ 𝑧) |
| 93 | 92 | ralrimiva 2966 |
. . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∃𝑧 ∈ ℝ ∀𝑤 ∈ 𝐾 (abs‘(𝑤‘𝑥)) ≤ 𝑧) |
| 94 | | imassrn 5477 |
. . . . . . . . 9
⊢ (𝐹 “ {𝑧 ∈ 𝑋 ∣ (𝑁‘𝑧) ≤ 1}) ⊆ ran 𝐹 |
| 95 | 28, 94 | eqsstri 3635 |
. . . . . . . 8
⊢ 𝐾 ⊆ ran 𝐹 |
| 96 | | frn 6053 |
. . . . . . . . 9
⊢ (𝐹:𝑋⟶(𝑈 BLnOp 𝑊) → ran 𝐹 ⊆ (𝑈 BLnOp 𝑊)) |
| 97 | 23, 96 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ran 𝐹 ⊆ (𝑈 BLnOp 𝑊)) |
| 98 | 95, 97 | syl5ss 3614 |
. . . . . . 7
⊢ (𝜑 → 𝐾 ⊆ (𝑈 BLnOp 𝑊)) |
| 99 | | hlobn 27744 |
. . . . . . . . 9
⊢ (𝑈 ∈ CHilOLD
→ 𝑈 ∈
CBan) |
| 100 | 2, 99 | ax-mp 5 |
. . . . . . . 8
⊢ 𝑈 ∈ CBan |
| 101 | 17 | cnnv 27532 |
. . . . . . . 8
⊢ 𝑊 ∈ NrmCVec |
| 102 | 17 | cnnvnm 27536 |
. . . . . . . . 9
⊢ abs =
(normCV‘𝑊) |
| 103 | | eqid 2622 |
. . . . . . . . 9
⊢ (𝑈 normOpOLD 𝑊) = (𝑈 normOpOLD 𝑊) |
| 104 | 4, 102, 103 | ubth 27729 |
. . . . . . . 8
⊢ ((𝑈 ∈ CBan ∧ 𝑊 ∈ NrmCVec ∧ 𝐾 ⊆ (𝑈 BLnOp 𝑊)) → (∀𝑥 ∈ 𝑋 ∃𝑧 ∈ ℝ ∀𝑤 ∈ 𝐾 (abs‘(𝑤‘𝑥)) ≤ 𝑧 ↔ ∃𝑦 ∈ ℝ ∀𝑤 ∈ 𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦)) |
| 105 | 100, 101,
104 | mp3an12 1414 |
. . . . . . 7
⊢ (𝐾 ⊆ (𝑈 BLnOp 𝑊) → (∀𝑥 ∈ 𝑋 ∃𝑧 ∈ ℝ ∀𝑤 ∈ 𝐾 (abs‘(𝑤‘𝑥)) ≤ 𝑧 ↔ ∃𝑦 ∈ ℝ ∀𝑤 ∈ 𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦)) |
| 106 | 98, 105 | syl 17 |
. . . . . 6
⊢ (𝜑 → (∀𝑥 ∈ 𝑋 ∃𝑧 ∈ ℝ ∀𝑤 ∈ 𝐾 (abs‘(𝑤‘𝑥)) ≤ 𝑧 ↔ ∃𝑦 ∈ ℝ ∀𝑤 ∈ 𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦)) |
| 107 | 93, 106 | mpbid 222 |
. . . . 5
⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑤 ∈ 𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦) |
| 108 | | simpr 477 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ (𝑥 ∈ 𝑋 ∧ (𝑁‘𝑥) ≤ 1)) → (𝑥 ∈ 𝑋 ∧ (𝑁‘𝑥) ≤ 1)) |
| 109 | | fveq2 6191 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑥 → (𝑁‘𝑧) = (𝑁‘𝑥)) |
| 110 | 109 | breq1d 4663 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑥 → ((𝑁‘𝑧) ≤ 1 ↔ (𝑁‘𝑥) ≤ 1)) |
| 111 | 110 | elrab 3363 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ {𝑧 ∈ 𝑋 ∣ (𝑁‘𝑧) ≤ 1} ↔ (𝑥 ∈ 𝑋 ∧ (𝑁‘𝑥) ≤ 1)) |
| 112 | 108, 111 | sylibr 224 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ (𝑥 ∈ 𝑋 ∧ (𝑁‘𝑥) ≤ 1)) → 𝑥 ∈ {𝑧 ∈ 𝑋 ∣ (𝑁‘𝑧) ≤ 1}) |
| 113 | 22, 21 | dmmptd 6024 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → dom 𝐹 = 𝑋) |
| 114 | 113 | eleq2d 2687 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑥 ∈ dom 𝐹 ↔ 𝑥 ∈ 𝑋)) |
| 115 | 114 | biimpar 502 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ dom 𝐹) |
| 116 | | funfvima 6492 |
. . . . . . . . . . . . . . . 16
⊢ ((Fun
𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝑥 ∈ {𝑧 ∈ 𝑋 ∣ (𝑁‘𝑧) ≤ 1} → (𝐹‘𝑥) ∈ (𝐹 “ {𝑧 ∈ 𝑋 ∣ (𝑁‘𝑧) ≤ 1}))) |
| 117 | 25, 116 | sylan 488 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → (𝑥 ∈ {𝑧 ∈ 𝑋 ∣ (𝑁‘𝑧) ≤ 1} → (𝐹‘𝑥) ∈ (𝐹 “ {𝑧 ∈ 𝑋 ∣ (𝑁‘𝑧) ≤ 1}))) |
| 118 | 115, 117 | syldan 487 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑥 ∈ {𝑧 ∈ 𝑋 ∣ (𝑁‘𝑧) ≤ 1} → (𝐹‘𝑥) ∈ (𝐹 “ {𝑧 ∈ 𝑋 ∣ (𝑁‘𝑧) ≤ 1}))) |
| 119 | 118 | ad2ant2r 783 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ (𝑥 ∈ 𝑋 ∧ (𝑁‘𝑥) ≤ 1)) → (𝑥 ∈ {𝑧 ∈ 𝑋 ∣ (𝑁‘𝑧) ≤ 1} → (𝐹‘𝑥) ∈ (𝐹 “ {𝑧 ∈ 𝑋 ∣ (𝑁‘𝑧) ≤ 1}))) |
| 120 | 112, 119 | mpd 15 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ (𝑥 ∈ 𝑋 ∧ (𝑁‘𝑥) ≤ 1)) → (𝐹‘𝑥) ∈ (𝐹 “ {𝑧 ∈ 𝑋 ∣ (𝑁‘𝑧) ≤ 1})) |
| 121 | 120, 28 | syl6eleqr 2712 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ (𝑥 ∈ 𝑋 ∧ (𝑁‘𝑥) ≤ 1)) → (𝐹‘𝑥) ∈ 𝐾) |
| 122 | | fveq2 6191 |
. . . . . . . . . . . . 13
⊢ (𝑤 = (𝐹‘𝑥) → ((𝑈 normOpOLD 𝑊)‘𝑤) = ((𝑈 normOpOLD 𝑊)‘(𝐹‘𝑥))) |
| 123 | 122 | breq1d 4663 |
. . . . . . . . . . . 12
⊢ (𝑤 = (𝐹‘𝑥) → (((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦 ↔ ((𝑈 normOpOLD 𝑊)‘(𝐹‘𝑥)) ≤ 𝑦)) |
| 124 | 123 | rspcv 3305 |
. . . . . . . . . . 11
⊢ ((𝐹‘𝑥) ∈ 𝐾 → (∀𝑤 ∈ 𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦 → ((𝑈 normOpOLD 𝑊)‘(𝐹‘𝑥)) ≤ 𝑦)) |
| 125 | 121, 124 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ (𝑥 ∈ 𝑋 ∧ (𝑁‘𝑥) ≤ 1)) → (∀𝑤 ∈ 𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦 → ((𝑈 normOpOLD 𝑊)‘(𝐹‘𝑥)) ≤ 𝑦)) |
| 126 | 12 | ad2ant2r 783 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ (𝑥 ∈ 𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹‘𝑥)) ≤ 𝑦)) → (𝑁‘(𝑇‘𝑥)) ∈ ℝ) |
| 127 | 126, 126 | remulcld 10070 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ (𝑥 ∈ 𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹‘𝑥)) ≤ 𝑦)) → ((𝑁‘(𝑇‘𝑥)) · (𝑁‘(𝑇‘𝑥))) ∈ ℝ) |
| 128 | 23 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐹‘𝑥) ∈ (𝑈 BLnOp 𝑊)) |
| 129 | 17 | cnnvba 27534 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ℂ =
(BaseSet‘𝑊) |
| 130 | 4, 129, 103, 18 | nmblore 27641 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ (𝐹‘𝑥) ∈ (𝑈 BLnOp 𝑊)) → ((𝑈 normOpOLD 𝑊)‘(𝐹‘𝑥)) ∈ ℝ) |
| 131 | 3, 101, 130 | mp3an12 1414 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹‘𝑥) ∈ (𝑈 BLnOp 𝑊) → ((𝑈 normOpOLD 𝑊)‘(𝐹‘𝑥)) ∈ ℝ) |
| 132 | 128, 131 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑈 normOpOLD 𝑊)‘(𝐹‘𝑥)) ∈ ℝ) |
| 133 | 132 | ad2ant2r 783 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ (𝑥 ∈ 𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹‘𝑥)) ≤ 𝑦)) → ((𝑈 normOpOLD 𝑊)‘(𝐹‘𝑥)) ∈ ℝ) |
| 134 | 133, 126 | remulcld 10070 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ (𝑥 ∈ 𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹‘𝑥)) ≤ 𝑦)) → (((𝑈 normOpOLD 𝑊)‘(𝐹‘𝑥)) · (𝑁‘(𝑇‘𝑥))) ∈ ℝ) |
| 135 | | simplr 792 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ (𝑥 ∈ 𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹‘𝑥)) ≤ 𝑦)) → 𝑦 ∈ ℝ) |
| 136 | 135, 126 | remulcld 10070 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ (𝑥 ∈ 𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹‘𝑥)) ≤ 𝑦)) → (𝑦 · (𝑁‘(𝑇‘𝑥))) ∈ ℝ) |
| 137 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑧 = 𝑥 → (𝑇‘𝑧) = (𝑇‘𝑥)) |
| 138 | 137 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑧 = 𝑥 → (𝑤𝑃(𝑇‘𝑧)) = (𝑤𝑃(𝑇‘𝑥))) |
| 139 | 138 | mpteq2dv 4745 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑧 = 𝑥 → (𝑤 ∈ 𝑋 ↦ (𝑤𝑃(𝑇‘𝑧))) = (𝑤 ∈ 𝑋 ↦ (𝑤𝑃(𝑇‘𝑥)))) |
| 140 | 39 | mptex 6486 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑤 ∈ 𝑋 ↦ (𝑤𝑃(𝑇‘𝑥))) ∈ V |
| 141 | 139, 22, 140 | fvmpt 6282 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 ∈ 𝑋 → (𝐹‘𝑥) = (𝑤 ∈ 𝑋 ↦ (𝑤𝑃(𝑇‘𝑥)))) |
| 142 | 141 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐹‘𝑥) = (𝑤 ∈ 𝑋 ↦ (𝑤𝑃(𝑇‘𝑥)))) |
| 143 | 142 | fveq1d 6193 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐹‘𝑥)‘(𝑇‘𝑥)) = ((𝑤 ∈ 𝑋 ↦ (𝑤𝑃(𝑇‘𝑥)))‘(𝑇‘𝑥))) |
| 144 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 = (𝑇‘𝑥) → (𝑤𝑃(𝑇‘𝑥)) = ((𝑇‘𝑥)𝑃(𝑇‘𝑥))) |
| 145 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 ∈ 𝑋 ↦ (𝑤𝑃(𝑇‘𝑥))) = (𝑤 ∈ 𝑋 ↦ (𝑤𝑃(𝑇‘𝑥))) |
| 146 | | ovex 6678 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑇‘𝑥)𝑃(𝑇‘𝑥)) ∈ V |
| 147 | 144, 145,
146 | fvmpt 6282 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑇‘𝑥) ∈ 𝑋 → ((𝑤 ∈ 𝑋 ↦ (𝑤𝑃(𝑇‘𝑥)))‘(𝑇‘𝑥)) = ((𝑇‘𝑥)𝑃(𝑇‘𝑥))) |
| 148 | 9, 147 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑤 ∈ 𝑋 ↦ (𝑤𝑃(𝑇‘𝑥)))‘(𝑇‘𝑥)) = ((𝑇‘𝑥)𝑃(𝑇‘𝑥))) |
| 149 | 143, 148 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐹‘𝑥)‘(𝑇‘𝑥)) = ((𝑇‘𝑥)𝑃(𝑇‘𝑥))) |
| 150 | 149 | ad2ant2r 783 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ (𝑥 ∈ 𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹‘𝑥)) ≤ 𝑦)) → ((𝐹‘𝑥)‘(𝑇‘𝑥)) = ((𝑇‘𝑥)𝑃(𝑇‘𝑥))) |
| 151 | 9 | ad2ant2r 783 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ (𝑥 ∈ 𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹‘𝑥)) ≤ 𝑦)) → (𝑇‘𝑥) ∈ 𝑋) |
| 152 | 4, 10, 14 | ipidsq 27565 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑈 ∈ NrmCVec ∧ (𝑇‘𝑥) ∈ 𝑋) → ((𝑇‘𝑥)𝑃(𝑇‘𝑥)) = ((𝑁‘(𝑇‘𝑥))↑2)) |
| 153 | 3, 151, 152 | sylancr 695 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ (𝑥 ∈ 𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹‘𝑥)) ≤ 𝑦)) → ((𝑇‘𝑥)𝑃(𝑇‘𝑥)) = ((𝑁‘(𝑇‘𝑥))↑2)) |
| 154 | 150, 153 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ (𝑥 ∈ 𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹‘𝑥)) ≤ 𝑦)) → ((𝐹‘𝑥)‘(𝑇‘𝑥)) = ((𝑁‘(𝑇‘𝑥))↑2)) |
| 155 | 154 | fveq2d 6195 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ (𝑥 ∈ 𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹‘𝑥)) ≤ 𝑦)) → (abs‘((𝐹‘𝑥)‘(𝑇‘𝑥))) = (abs‘((𝑁‘(𝑇‘𝑥))↑2))) |
| 156 | | resqcl 12931 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁‘(𝑇‘𝑥)) ∈ ℝ → ((𝑁‘(𝑇‘𝑥))↑2) ∈ ℝ) |
| 157 | | sqge0 12940 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁‘(𝑇‘𝑥)) ∈ ℝ → 0 ≤ ((𝑁‘(𝑇‘𝑥))↑2)) |
| 158 | 156, 157 | absidd 14161 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁‘(𝑇‘𝑥)) ∈ ℝ → (abs‘((𝑁‘(𝑇‘𝑥))↑2)) = ((𝑁‘(𝑇‘𝑥))↑2)) |
| 159 | 126, 158 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ (𝑥 ∈ 𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹‘𝑥)) ≤ 𝑦)) → (abs‘((𝑁‘(𝑇‘𝑥))↑2)) = ((𝑁‘(𝑇‘𝑥))↑2)) |
| 160 | 126 | recnd 10068 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ (𝑥 ∈ 𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹‘𝑥)) ≤ 𝑦)) → (𝑁‘(𝑇‘𝑥)) ∈ ℂ) |
| 161 | 160 | sqvald 13005 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ (𝑥 ∈ 𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹‘𝑥)) ≤ 𝑦)) → ((𝑁‘(𝑇‘𝑥))↑2) = ((𝑁‘(𝑇‘𝑥)) · (𝑁‘(𝑇‘𝑥)))) |
| 162 | 155, 159,
161 | 3eqtrd 2660 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ (𝑥 ∈ 𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹‘𝑥)) ≤ 𝑦)) → (abs‘((𝐹‘𝑥)‘(𝑇‘𝑥))) = ((𝑁‘(𝑇‘𝑥)) · (𝑁‘(𝑇‘𝑥)))) |
| 163 | 128 | ad2ant2r 783 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ (𝑥 ∈ 𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹‘𝑥)) ≤ 𝑦)) → (𝐹‘𝑥) ∈ (𝑈 BLnOp 𝑊)) |
| 164 | 4, 10, 102, 103, 18, 3, 101 | nmblolbi 27655 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹‘𝑥) ∈ (𝑈 BLnOp 𝑊) ∧ (𝑇‘𝑥) ∈ 𝑋) → (abs‘((𝐹‘𝑥)‘(𝑇‘𝑥))) ≤ (((𝑈 normOpOLD 𝑊)‘(𝐹‘𝑥)) · (𝑁‘(𝑇‘𝑥)))) |
| 165 | 163, 151,
164 | syl2anc 693 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ (𝑥 ∈ 𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹‘𝑥)) ≤ 𝑦)) → (abs‘((𝐹‘𝑥)‘(𝑇‘𝑥))) ≤ (((𝑈 normOpOLD 𝑊)‘(𝐹‘𝑥)) · (𝑁‘(𝑇‘𝑥)))) |
| 166 | 162, 165 | eqbrtrrd 4677 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ (𝑥 ∈ 𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹‘𝑥)) ≤ 𝑦)) → ((𝑁‘(𝑇‘𝑥)) · (𝑁‘(𝑇‘𝑥))) ≤ (((𝑈 normOpOLD 𝑊)‘(𝐹‘𝑥)) · (𝑁‘(𝑇‘𝑥)))) |
| 167 | 3, 151, 69 | sylancr 695 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ (𝑥 ∈ 𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹‘𝑥)) ≤ 𝑦)) → 0 ≤ (𝑁‘(𝑇‘𝑥))) |
| 168 | | simprr 796 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ (𝑥 ∈ 𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹‘𝑥)) ≤ 𝑦)) → ((𝑈 normOpOLD 𝑊)‘(𝐹‘𝑥)) ≤ 𝑦) |
| 169 | 133, 135,
126, 167, 168 | lemul1ad 10963 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ (𝑥 ∈ 𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹‘𝑥)) ≤ 𝑦)) → (((𝑈 normOpOLD 𝑊)‘(𝐹‘𝑥)) · (𝑁‘(𝑇‘𝑥))) ≤ (𝑦 · (𝑁‘(𝑇‘𝑥)))) |
| 170 | 127, 134,
136, 166, 169 | letrd 10194 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ (𝑥 ∈ 𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹‘𝑥)) ≤ 𝑦)) → ((𝑁‘(𝑇‘𝑥)) · (𝑁‘(𝑇‘𝑥))) ≤ (𝑦 · (𝑁‘(𝑇‘𝑥)))) |
| 171 | | lemul1 10875 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁‘(𝑇‘𝑥)) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ ((𝑁‘(𝑇‘𝑥)) ∈ ℝ ∧ 0 < (𝑁‘(𝑇‘𝑥)))) → ((𝑁‘(𝑇‘𝑥)) ≤ 𝑦 ↔ ((𝑁‘(𝑇‘𝑥)) · (𝑁‘(𝑇‘𝑥))) ≤ (𝑦 · (𝑁‘(𝑇‘𝑥))))) |
| 172 | 171 | biimprd 238 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁‘(𝑇‘𝑥)) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ ((𝑁‘(𝑇‘𝑥)) ∈ ℝ ∧ 0 < (𝑁‘(𝑇‘𝑥)))) → (((𝑁‘(𝑇‘𝑥)) · (𝑁‘(𝑇‘𝑥))) ≤ (𝑦 · (𝑁‘(𝑇‘𝑥))) → (𝑁‘(𝑇‘𝑥)) ≤ 𝑦)) |
| 173 | 172 | 3expia 1267 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁‘(𝑇‘𝑥)) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝑁‘(𝑇‘𝑥)) ∈ ℝ ∧ 0 < (𝑁‘(𝑇‘𝑥))) → (((𝑁‘(𝑇‘𝑥)) · (𝑁‘(𝑇‘𝑥))) ≤ (𝑦 · (𝑁‘(𝑇‘𝑥))) → (𝑁‘(𝑇‘𝑥)) ≤ 𝑦))) |
| 174 | 173 | expdimp 453 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑁‘(𝑇‘𝑥)) ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑁‘(𝑇‘𝑥)) ∈ ℝ) → (0 < (𝑁‘(𝑇‘𝑥)) → (((𝑁‘(𝑇‘𝑥)) · (𝑁‘(𝑇‘𝑥))) ≤ (𝑦 · (𝑁‘(𝑇‘𝑥))) → (𝑁‘(𝑇‘𝑥)) ≤ 𝑦))) |
| 175 | 126, 135,
126, 174 | syl21anc 1325 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ (𝑥 ∈ 𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹‘𝑥)) ≤ 𝑦)) → (0 < (𝑁‘(𝑇‘𝑥)) → (((𝑁‘(𝑇‘𝑥)) · (𝑁‘(𝑇‘𝑥))) ≤ (𝑦 · (𝑁‘(𝑇‘𝑥))) → (𝑁‘(𝑇‘𝑥)) ≤ 𝑦))) |
| 176 | 170, 175 | mpid 44 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ (𝑥 ∈ 𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹‘𝑥)) ≤ 𝑦)) → (0 < (𝑁‘(𝑇‘𝑥)) → (𝑁‘(𝑇‘𝑥)) ≤ 𝑦)) |
| 177 | | 0red 10041 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ (𝑥 ∈ 𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹‘𝑥)) ≤ 𝑦)) → 0 ∈ ℝ) |
| 178 | 4, 129, 18 | blof 27640 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ (𝐹‘𝑥) ∈ (𝑈 BLnOp 𝑊)) → (𝐹‘𝑥):𝑋⟶ℂ) |
| 179 | 3, 101, 178 | mp3an12 1414 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹‘𝑥) ∈ (𝑈 BLnOp 𝑊) → (𝐹‘𝑥):𝑋⟶ℂ) |
| 180 | 128, 179 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐹‘𝑥):𝑋⟶ℂ) |
| 181 | 180 | ad2ant2r 783 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ (𝑥 ∈ 𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹‘𝑥)) ≤ 𝑦)) → (𝐹‘𝑥):𝑋⟶ℂ) |
| 182 | 4, 129, 103 | nmooge0 27622 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ (𝐹‘𝑥):𝑋⟶ℂ) → 0 ≤ ((𝑈 normOpOLD 𝑊)‘(𝐹‘𝑥))) |
| 183 | 3, 101, 182 | mp3an12 1414 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹‘𝑥):𝑋⟶ℂ → 0 ≤ ((𝑈 normOpOLD 𝑊)‘(𝐹‘𝑥))) |
| 184 | 181, 183 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ (𝑥 ∈ 𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹‘𝑥)) ≤ 𝑦)) → 0 ≤ ((𝑈 normOpOLD 𝑊)‘(𝐹‘𝑥))) |
| 185 | 177, 133,
135, 184, 168 | letrd 10194 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ (𝑥 ∈ 𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹‘𝑥)) ≤ 𝑦)) → 0 ≤ 𝑦) |
| 186 | | breq1 4656 |
. . . . . . . . . . . . . 14
⊢ (0 =
(𝑁‘(𝑇‘𝑥)) → (0 ≤ 𝑦 ↔ (𝑁‘(𝑇‘𝑥)) ≤ 𝑦)) |
| 187 | 185, 186 | syl5ibcom 235 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ (𝑥 ∈ 𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹‘𝑥)) ≤ 𝑦)) → (0 = (𝑁‘(𝑇‘𝑥)) → (𝑁‘(𝑇‘𝑥)) ≤ 𝑦)) |
| 188 | | 0re 10040 |
. . . . . . . . . . . . . . 15
⊢ 0 ∈
ℝ |
| 189 | | leloe 10124 |
. . . . . . . . . . . . . . 15
⊢ ((0
∈ ℝ ∧ (𝑁‘(𝑇‘𝑥)) ∈ ℝ) → (0 ≤ (𝑁‘(𝑇‘𝑥)) ↔ (0 < (𝑁‘(𝑇‘𝑥)) ∨ 0 = (𝑁‘(𝑇‘𝑥))))) |
| 190 | 188, 126,
189 | sylancr 695 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ (𝑥 ∈ 𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹‘𝑥)) ≤ 𝑦)) → (0 ≤ (𝑁‘(𝑇‘𝑥)) ↔ (0 < (𝑁‘(𝑇‘𝑥)) ∨ 0 = (𝑁‘(𝑇‘𝑥))))) |
| 191 | 167, 190 | mpbid 222 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ (𝑥 ∈ 𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹‘𝑥)) ≤ 𝑦)) → (0 < (𝑁‘(𝑇‘𝑥)) ∨ 0 = (𝑁‘(𝑇‘𝑥)))) |
| 192 | 176, 187,
191 | mpjaod 396 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ (𝑥 ∈ 𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹‘𝑥)) ≤ 𝑦)) → (𝑁‘(𝑇‘𝑥)) ≤ 𝑦) |
| 193 | 192 | expr 643 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝑋) → (((𝑈 normOpOLD 𝑊)‘(𝐹‘𝑥)) ≤ 𝑦 → (𝑁‘(𝑇‘𝑥)) ≤ 𝑦)) |
| 194 | 193 | adantrr 753 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ (𝑥 ∈ 𝑋 ∧ (𝑁‘𝑥) ≤ 1)) → (((𝑈 normOpOLD 𝑊)‘(𝐹‘𝑥)) ≤ 𝑦 → (𝑁‘(𝑇‘𝑥)) ≤ 𝑦)) |
| 195 | 125, 194 | syld 47 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ (𝑥 ∈ 𝑋 ∧ (𝑁‘𝑥) ≤ 1)) → (∀𝑤 ∈ 𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦 → (𝑁‘(𝑇‘𝑥)) ≤ 𝑦)) |
| 196 | 195 | expr 643 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝑋) → ((𝑁‘𝑥) ≤ 1 → (∀𝑤 ∈ 𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦 → (𝑁‘(𝑇‘𝑥)) ≤ 𝑦))) |
| 197 | 196 | com23 86 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝑋) → (∀𝑤 ∈ 𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦 → ((𝑁‘𝑥) ≤ 1 → (𝑁‘(𝑇‘𝑥)) ≤ 𝑦))) |
| 198 | 197 | ralrimdva 2969 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (∀𝑤 ∈ 𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦 → ∀𝑥 ∈ 𝑋 ((𝑁‘𝑥) ≤ 1 → (𝑁‘(𝑇‘𝑥)) ≤ 𝑦))) |
| 199 | 198 | reximdva 3017 |
. . . . 5
⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑤 ∈ 𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝑋 ((𝑁‘𝑥) ≤ 1 → (𝑁‘(𝑇‘𝑥)) ≤ 𝑦))) |
| 200 | 107, 199 | mpd 15 |
. . . 4
⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝑋 ((𝑁‘𝑥) ≤ 1 → (𝑁‘(𝑇‘𝑥)) ≤ 𝑦)) |
| 201 | | eqid 2622 |
. . . . . 6
⊢ (𝑈 normOpOLD 𝑈) = (𝑈 normOpOLD 𝑈) |
| 202 | 4, 4, 10, 10, 201, 3, 3 | nmobndi 27630 |
. . . . 5
⊢ (𝑇:𝑋⟶𝑋 → (((𝑈 normOpOLD 𝑈)‘𝑇) ∈ ℝ ↔ ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝑋 ((𝑁‘𝑥) ≤ 1 → (𝑁‘(𝑇‘𝑥)) ≤ 𝑦))) |
| 203 | 8, 202 | syl 17 |
. . . 4
⊢ (𝜑 → (((𝑈 normOpOLD 𝑈)‘𝑇) ∈ ℝ ↔ ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝑋 ((𝑁‘𝑥) ≤ 1 → (𝑁‘(𝑇‘𝑥)) ≤ 𝑦))) |
| 204 | 200, 203 | mpbird 247 |
. . 3
⊢ (𝜑 → ((𝑈 normOpOLD 𝑈)‘𝑇) ∈ ℝ) |
| 205 | | ltpnf 11954 |
. . 3
⊢ (((𝑈 normOpOLD 𝑈)‘𝑇) ∈ ℝ → ((𝑈 normOpOLD 𝑈)‘𝑇) < +∞) |
| 206 | 204, 205 | syl 17 |
. 2
⊢ (𝜑 → ((𝑈 normOpOLD 𝑈)‘𝑇) < +∞) |
| 207 | | htth.4 |
. . . 4
⊢ 𝐵 = (𝑈 BLnOp 𝑈) |
| 208 | 201, 5, 207 | isblo 27637 |
. . 3
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑈 ∈ NrmCVec) → (𝑇 ∈ 𝐵 ↔ (𝑇 ∈ 𝐿 ∧ ((𝑈 normOpOLD 𝑈)‘𝑇) < +∞))) |
| 209 | 3, 3, 208 | mp2an 708 |
. 2
⊢ (𝑇 ∈ 𝐵 ↔ (𝑇 ∈ 𝐿 ∧ ((𝑈 normOpOLD 𝑈)‘𝑇) < +∞)) |
| 210 | 1, 206, 209 | sylanbrc 698 |
1
⊢ (𝜑 → 𝑇 ∈ 𝐵) |