| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifpr | Structured version Visualization version GIF version | ||
| Description: Membership of a conditional operator in an unordered pair. (Contributed by NM, 17-Jun-2007.) |
| Ref | Expression |
|---|---|
| ifpr | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → if(𝜑, 𝐴, 𝐵) ∈ {𝐴, 𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3212 | . 2 ⊢ (𝐴 ∈ 𝐶 → 𝐴 ∈ V) | |
| 2 | elex 3212 | . 2 ⊢ (𝐵 ∈ 𝐷 → 𝐵 ∈ V) | |
| 3 | ifcl 4130 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → if(𝜑, 𝐴, 𝐵) ∈ V) | |
| 4 | ifeqor 4132 | . . . 4 ⊢ (if(𝜑, 𝐴, 𝐵) = 𝐴 ∨ if(𝜑, 𝐴, 𝐵) = 𝐵) | |
| 5 | elprg 4196 | . . . 4 ⊢ (if(𝜑, 𝐴, 𝐵) ∈ V → (if(𝜑, 𝐴, 𝐵) ∈ {𝐴, 𝐵} ↔ (if(𝜑, 𝐴, 𝐵) = 𝐴 ∨ if(𝜑, 𝐴, 𝐵) = 𝐵))) | |
| 6 | 4, 5 | mpbiri 248 | . . 3 ⊢ (if(𝜑, 𝐴, 𝐵) ∈ V → if(𝜑, 𝐴, 𝐵) ∈ {𝐴, 𝐵}) |
| 7 | 3, 6 | syl 17 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → if(𝜑, 𝐴, 𝐵) ∈ {𝐴, 𝐵}) |
| 8 | 1, 2, 7 | syl2an 494 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → if(𝜑, 𝐴, 𝐵) ∈ {𝐴, 𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 383 ∧ wa 384 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ifcif 4086 {cpr 4179 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-un 3579 df-if 4087 df-sn 4178 df-pr 4180 |
| This theorem is referenced by: suppr 8377 infpr 8409 uvcvvcl 20126 indf 30077 |
| Copyright terms: Public domain | W3C validator |