MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifpr Structured version   Visualization version   GIF version

Theorem ifpr 4233
Description: Membership of a conditional operator in an unordered pair. (Contributed by NM, 17-Jun-2007.)
Assertion
Ref Expression
ifpr ((𝐴𝐶𝐵𝐷) → if(𝜑, 𝐴, 𝐵) ∈ {𝐴, 𝐵})

Proof of Theorem ifpr
StepHypRef Expression
1 elex 3212 . 2 (𝐴𝐶𝐴 ∈ V)
2 elex 3212 . 2 (𝐵𝐷𝐵 ∈ V)
3 ifcl 4130 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → if(𝜑, 𝐴, 𝐵) ∈ V)
4 ifeqor 4132 . . . 4 (if(𝜑, 𝐴, 𝐵) = 𝐴 ∨ if(𝜑, 𝐴, 𝐵) = 𝐵)
5 elprg 4196 . . . 4 (if(𝜑, 𝐴, 𝐵) ∈ V → (if(𝜑, 𝐴, 𝐵) ∈ {𝐴, 𝐵} ↔ (if(𝜑, 𝐴, 𝐵) = 𝐴 ∨ if(𝜑, 𝐴, 𝐵) = 𝐵)))
64, 5mpbiri 248 . . 3 (if(𝜑, 𝐴, 𝐵) ∈ V → if(𝜑, 𝐴, 𝐵) ∈ {𝐴, 𝐵})
73, 6syl 17 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → if(𝜑, 𝐴, 𝐵) ∈ {𝐴, 𝐵})
81, 2, 7syl2an 494 1 ((𝐴𝐶𝐵𝐷) → if(𝜑, 𝐴, 𝐵) ∈ {𝐴, 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  ifcif 4086  {cpr 4179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-un 3579  df-if 4087  df-sn 4178  df-pr 4180
This theorem is referenced by:  suppr  8377  infpr  8409  uvcvvcl  20126  indf  30077
  Copyright terms: Public domain W3C validator