MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppr Structured version   Visualization version   GIF version

Theorem suppr 8377
Description: The supremum of a pair. (Contributed by NM, 17-Jun-2007.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
suppr ((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) → sup({𝐵, 𝐶}, 𝐴, 𝑅) = if(𝐶𝑅𝐵, 𝐵, 𝐶))

Proof of Theorem suppr
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simp1 1061 . 2 ((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) → 𝑅 Or 𝐴)
2 ifcl 4130 . . 3 ((𝐵𝐴𝐶𝐴) → if(𝐶𝑅𝐵, 𝐵, 𝐶) ∈ 𝐴)
323adant1 1079 . 2 ((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) → if(𝐶𝑅𝐵, 𝐵, 𝐶) ∈ 𝐴)
4 ifpr 4233 . . 3 ((𝐵𝐴𝐶𝐴) → if(𝐶𝑅𝐵, 𝐵, 𝐶) ∈ {𝐵, 𝐶})
543adant1 1079 . 2 ((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) → if(𝐶𝑅𝐵, 𝐵, 𝐶) ∈ {𝐵, 𝐶})
6 breq1 4656 . . . . . 6 (𝐵 = if(𝐶𝑅𝐵, 𝐵, 𝐶) → (𝐵𝑅𝐵 ↔ if(𝐶𝑅𝐵, 𝐵, 𝐶)𝑅𝐵))
76notbid 308 . . . . 5 (𝐵 = if(𝐶𝑅𝐵, 𝐵, 𝐶) → (¬ 𝐵𝑅𝐵 ↔ ¬ if(𝐶𝑅𝐵, 𝐵, 𝐶)𝑅𝐵))
8 breq1 4656 . . . . . 6 (𝐶 = if(𝐶𝑅𝐵, 𝐵, 𝐶) → (𝐶𝑅𝐵 ↔ if(𝐶𝑅𝐵, 𝐵, 𝐶)𝑅𝐵))
98notbid 308 . . . . 5 (𝐶 = if(𝐶𝑅𝐵, 𝐵, 𝐶) → (¬ 𝐶𝑅𝐵 ↔ ¬ if(𝐶𝑅𝐵, 𝐵, 𝐶)𝑅𝐵))
10 sonr 5056 . . . . . . 7 ((𝑅 Or 𝐴𝐵𝐴) → ¬ 𝐵𝑅𝐵)
11103adant3 1081 . . . . . 6 ((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) → ¬ 𝐵𝑅𝐵)
1211adantr 481 . . . . 5 (((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) ∧ 𝐶𝑅𝐵) → ¬ 𝐵𝑅𝐵)
13 simpr 477 . . . . 5 (((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) ∧ ¬ 𝐶𝑅𝐵) → ¬ 𝐶𝑅𝐵)
147, 9, 12, 13ifbothda 4123 . . . 4 ((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) → ¬ if(𝐶𝑅𝐵, 𝐵, 𝐶)𝑅𝐵)
15 breq1 4656 . . . . . 6 (𝐵 = if(𝐶𝑅𝐵, 𝐵, 𝐶) → (𝐵𝑅𝐶 ↔ if(𝐶𝑅𝐵, 𝐵, 𝐶)𝑅𝐶))
1615notbid 308 . . . . 5 (𝐵 = if(𝐶𝑅𝐵, 𝐵, 𝐶) → (¬ 𝐵𝑅𝐶 ↔ ¬ if(𝐶𝑅𝐵, 𝐵, 𝐶)𝑅𝐶))
17 breq1 4656 . . . . . 6 (𝐶 = if(𝐶𝑅𝐵, 𝐵, 𝐶) → (𝐶𝑅𝐶 ↔ if(𝐶𝑅𝐵, 𝐵, 𝐶)𝑅𝐶))
1817notbid 308 . . . . 5 (𝐶 = if(𝐶𝑅𝐵, 𝐵, 𝐶) → (¬ 𝐶𝑅𝐶 ↔ ¬ if(𝐶𝑅𝐵, 𝐵, 𝐶)𝑅𝐶))
19 so2nr 5059 . . . . . . . . 9 ((𝑅 Or 𝐴 ∧ (𝐶𝐴𝐵𝐴)) → ¬ (𝐶𝑅𝐵𝐵𝑅𝐶))
20193impb 1260 . . . . . . . 8 ((𝑅 Or 𝐴𝐶𝐴𝐵𝐴) → ¬ (𝐶𝑅𝐵𝐵𝑅𝐶))
21203com23 1271 . . . . . . 7 ((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) → ¬ (𝐶𝑅𝐵𝐵𝑅𝐶))
22 imnan 438 . . . . . . 7 ((𝐶𝑅𝐵 → ¬ 𝐵𝑅𝐶) ↔ ¬ (𝐶𝑅𝐵𝐵𝑅𝐶))
2321, 22sylibr 224 . . . . . 6 ((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) → (𝐶𝑅𝐵 → ¬ 𝐵𝑅𝐶))
2423imp 445 . . . . 5 (((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) ∧ 𝐶𝑅𝐵) → ¬ 𝐵𝑅𝐶)
25 sonr 5056 . . . . . . 7 ((𝑅 Or 𝐴𝐶𝐴) → ¬ 𝐶𝑅𝐶)
26253adant2 1080 . . . . . 6 ((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) → ¬ 𝐶𝑅𝐶)
2726adantr 481 . . . . 5 (((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) ∧ ¬ 𝐶𝑅𝐵) → ¬ 𝐶𝑅𝐶)
2816, 18, 24, 27ifbothda 4123 . . . 4 ((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) → ¬ if(𝐶𝑅𝐵, 𝐵, 𝐶)𝑅𝐶)
29 breq2 4657 . . . . . . 7 (𝑦 = 𝐵 → (if(𝐶𝑅𝐵, 𝐵, 𝐶)𝑅𝑦 ↔ if(𝐶𝑅𝐵, 𝐵, 𝐶)𝑅𝐵))
3029notbid 308 . . . . . 6 (𝑦 = 𝐵 → (¬ if(𝐶𝑅𝐵, 𝐵, 𝐶)𝑅𝑦 ↔ ¬ if(𝐶𝑅𝐵, 𝐵, 𝐶)𝑅𝐵))
31 breq2 4657 . . . . . . 7 (𝑦 = 𝐶 → (if(𝐶𝑅𝐵, 𝐵, 𝐶)𝑅𝑦 ↔ if(𝐶𝑅𝐵, 𝐵, 𝐶)𝑅𝐶))
3231notbid 308 . . . . . 6 (𝑦 = 𝐶 → (¬ if(𝐶𝑅𝐵, 𝐵, 𝐶)𝑅𝑦 ↔ ¬ if(𝐶𝑅𝐵, 𝐵, 𝐶)𝑅𝐶))
3330, 32ralprg 4234 . . . . 5 ((𝐵𝐴𝐶𝐴) → (∀𝑦 ∈ {𝐵, 𝐶} ¬ if(𝐶𝑅𝐵, 𝐵, 𝐶)𝑅𝑦 ↔ (¬ if(𝐶𝑅𝐵, 𝐵, 𝐶)𝑅𝐵 ∧ ¬ if(𝐶𝑅𝐵, 𝐵, 𝐶)𝑅𝐶)))
34333adant1 1079 . . . 4 ((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) → (∀𝑦 ∈ {𝐵, 𝐶} ¬ if(𝐶𝑅𝐵, 𝐵, 𝐶)𝑅𝑦 ↔ (¬ if(𝐶𝑅𝐵, 𝐵, 𝐶)𝑅𝐵 ∧ ¬ if(𝐶𝑅𝐵, 𝐵, 𝐶)𝑅𝐶)))
3514, 28, 34mpbir2and 957 . . 3 ((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) → ∀𝑦 ∈ {𝐵, 𝐶} ¬ if(𝐶𝑅𝐵, 𝐵, 𝐶)𝑅𝑦)
3635r19.21bi 2932 . 2 (((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) ∧ 𝑦 ∈ {𝐵, 𝐶}) → ¬ if(𝐶𝑅𝐵, 𝐵, 𝐶)𝑅𝑦)
371, 3, 5, 36supmax 8373 1 ((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) → sup({𝐵, 𝐶}, 𝐴, 𝑅) = if(𝐶𝑅𝐵, 𝐵, 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  ifcif 4086  {cpr 4179   class class class wbr 4653   Or wor 5034  supcsup 8346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-po 5035  df-so 5036  df-iota 5851  df-riota 6611  df-sup 8348
This theorem is referenced by:  supsn  8378  2resupmax  12019  tmsxpsval2  22344  esumsnf  30126  limsup10ex  40005  sge0sn  40596
  Copyright terms: Public domain W3C validator