![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifpsnprss | Structured version Visualization version GIF version |
Description: Lemma for wlkvtxeledg 26519: Two adjacent (not necessarily different) vertices 𝐴 and 𝐵 in a walk are incident with an edge 𝐸. (Contributed by AV, 4-Apr-2021.) (Revised by AV, 5-Nov-2021.) |
Ref | Expression |
---|---|
ifpsnprss | ⊢ (if-(𝐴 = 𝐵, 𝐸 = {𝐴}, {𝐴, 𝐵} ⊆ 𝐸) → {𝐴, 𝐵} ⊆ 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3624 | . . . 4 ⊢ {𝐴} ⊆ {𝐴} | |
2 | 1 | a1i 11 | . . 3 ⊢ ((𝐴 = 𝐵 ∧ 𝐸 = {𝐴}) → {𝐴} ⊆ {𝐴}) |
3 | preq2 4269 | . . . . . 6 ⊢ (𝐵 = 𝐴 → {𝐴, 𝐵} = {𝐴, 𝐴}) | |
4 | dfsn2 4190 | . . . . . 6 ⊢ {𝐴} = {𝐴, 𝐴} | |
5 | 3, 4 | syl6eqr 2674 | . . . . 5 ⊢ (𝐵 = 𝐴 → {𝐴, 𝐵} = {𝐴}) |
6 | 5 | eqcoms 2630 | . . . 4 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐴}) |
7 | 6 | adantr 481 | . . 3 ⊢ ((𝐴 = 𝐵 ∧ 𝐸 = {𝐴}) → {𝐴, 𝐵} = {𝐴}) |
8 | simpr 477 | . . 3 ⊢ ((𝐴 = 𝐵 ∧ 𝐸 = {𝐴}) → 𝐸 = {𝐴}) | |
9 | 2, 7, 8 | 3sstr4d 3648 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐸 = {𝐴}) → {𝐴, 𝐵} ⊆ 𝐸) |
10 | 9 | 1fpid3 1029 | 1 ⊢ (if-(𝐴 = 𝐵, 𝐸 = {𝐴}, {𝐴, 𝐵} ⊆ 𝐸) → {𝐴, 𝐵} ⊆ 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 if-wif 1012 = wceq 1483 ⊆ wss 3574 {csn 4177 {cpr 4179 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ifp 1013 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-un 3579 df-in 3581 df-ss 3588 df-sn 4178 df-pr 4180 |
This theorem is referenced by: wlkvtxeledg 26519 |
Copyright terms: Public domain | W3C validator |