MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifpsnprss Structured version   Visualization version   Unicode version

Theorem ifpsnprss 26518
Description: Lemma for wlkvtxeledg 26519: Two adjacent (not necessarily different) vertices  A and  B in a walk are incident with an edge  E. (Contributed by AV, 4-Apr-2021.) (Revised by AV, 5-Nov-2021.)
Assertion
Ref Expression
ifpsnprss  |-  (if- ( A  =  B ,  E  =  { A } ,  { A ,  B }  C_  E
)  ->  { A ,  B }  C_  E
)

Proof of Theorem ifpsnprss
StepHypRef Expression
1 ssid 3624 . . . 4  |-  { A }  C_  { A }
21a1i 11 . . 3  |-  ( ( A  =  B  /\  E  =  { A } )  ->  { A }  C_  { A }
)
3 preq2 4269 . . . . . 6  |-  ( B  =  A  ->  { A ,  B }  =  { A ,  A }
)
4 dfsn2 4190 . . . . . 6  |-  { A }  =  { A ,  A }
53, 4syl6eqr 2674 . . . . 5  |-  ( B  =  A  ->  { A ,  B }  =  { A } )
65eqcoms 2630 . . . 4  |-  ( A  =  B  ->  { A ,  B }  =  { A } )
76adantr 481 . . 3  |-  ( ( A  =  B  /\  E  =  { A } )  ->  { A ,  B }  =  { A } )
8 simpr 477 . . 3  |-  ( ( A  =  B  /\  E  =  { A } )  ->  E  =  { A } )
92, 7, 83sstr4d 3648 . 2  |-  ( ( A  =  B  /\  E  =  { A } )  ->  { A ,  B }  C_  E
)
1091fpid3 1029 1  |-  (if- ( A  =  B ,  E  =  { A } ,  { A ,  B }  C_  E
)  ->  { A ,  B }  C_  E
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384  if-wif 1012    = wceq 1483    C_ wss 3574   {csn 4177   {cpr 4179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-un 3579  df-in 3581  df-ss 3588  df-sn 4178  df-pr 4180
This theorem is referenced by:  wlkvtxeledg  26519
  Copyright terms: Public domain W3C validator