| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl6bbr | Structured version Visualization version GIF version | ||
| Description: A syllogism inference from two biconditionals. (Contributed by NM, 12-Mar-1993.) |
| Ref | Expression |
|---|---|
| syl6bbr.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| syl6bbr.2 | ⊢ (𝜃 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| syl6bbr | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl6bbr.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | syl6bbr.2 | . . 3 ⊢ (𝜃 ↔ 𝜒) | |
| 3 | 2 | bicomi 214 | . 2 ⊢ (𝜒 ↔ 𝜃) |
| 4 | 1, 3 | syl6bb 276 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| Copyright terms: Public domain | W3C validator |