MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinrab2 Structured version   Visualization version   GIF version

Theorem iinrab2 4583
Description: Indexed intersection of a restricted class builder. (Contributed by NM, 6-Dec-2011.)
Assertion
Ref Expression
iinrab2 ( 𝑥𝐴 {𝑦𝐵𝜑} ∩ 𝐵) = {𝑦𝐵 ∣ ∀𝑥𝐴 𝜑}
Distinct variable groups:   𝑦,𝐴,𝑥   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem iinrab2
StepHypRef Expression
1 iineq1 4535 . . . . . 6 (𝐴 = ∅ → 𝑥𝐴 {𝑦𝐵𝜑} = 𝑥 ∈ ∅ {𝑦𝐵𝜑})
2 0iin 4578 . . . . . 6 𝑥 ∈ ∅ {𝑦𝐵𝜑} = V
31, 2syl6eq 2672 . . . . 5 (𝐴 = ∅ → 𝑥𝐴 {𝑦𝐵𝜑} = V)
43ineq1d 3813 . . . 4 (𝐴 = ∅ → ( 𝑥𝐴 {𝑦𝐵𝜑} ∩ 𝐵) = (V ∩ 𝐵))
5 incom 3805 . . . . 5 (V ∩ 𝐵) = (𝐵 ∩ V)
6 inv1 3970 . . . . 5 (𝐵 ∩ V) = 𝐵
75, 6eqtri 2644 . . . 4 (V ∩ 𝐵) = 𝐵
84, 7syl6eq 2672 . . 3 (𝐴 = ∅ → ( 𝑥𝐴 {𝑦𝐵𝜑} ∩ 𝐵) = 𝐵)
9 rzal 4073 . . . 4 (𝐴 = ∅ → ∀𝑥𝐴𝑦𝐵 𝜑)
10 rabid2 3118 . . . . 5 (𝐵 = {𝑦𝐵 ∣ ∀𝑥𝐴 𝜑} ↔ ∀𝑦𝐵𝑥𝐴 𝜑)
11 ralcom 3098 . . . . 5 (∀𝑦𝐵𝑥𝐴 𝜑 ↔ ∀𝑥𝐴𝑦𝐵 𝜑)
1210, 11bitr2i 265 . . . 4 (∀𝑥𝐴𝑦𝐵 𝜑𝐵 = {𝑦𝐵 ∣ ∀𝑥𝐴 𝜑})
139, 12sylib 208 . . 3 (𝐴 = ∅ → 𝐵 = {𝑦𝐵 ∣ ∀𝑥𝐴 𝜑})
148, 13eqtrd 2656 . 2 (𝐴 = ∅ → ( 𝑥𝐴 {𝑦𝐵𝜑} ∩ 𝐵) = {𝑦𝐵 ∣ ∀𝑥𝐴 𝜑})
15 iinrab 4582 . . . 4 (𝐴 ≠ ∅ → 𝑥𝐴 {𝑦𝐵𝜑} = {𝑦𝐵 ∣ ∀𝑥𝐴 𝜑})
1615ineq1d 3813 . . 3 (𝐴 ≠ ∅ → ( 𝑥𝐴 {𝑦𝐵𝜑} ∩ 𝐵) = ({𝑦𝐵 ∣ ∀𝑥𝐴 𝜑} ∩ 𝐵))
17 ssrab2 3687 . . . 4 {𝑦𝐵 ∣ ∀𝑥𝐴 𝜑} ⊆ 𝐵
18 dfss 3589 . . . 4 ({𝑦𝐵 ∣ ∀𝑥𝐴 𝜑} ⊆ 𝐵 ↔ {𝑦𝐵 ∣ ∀𝑥𝐴 𝜑} = ({𝑦𝐵 ∣ ∀𝑥𝐴 𝜑} ∩ 𝐵))
1917, 18mpbi 220 . . 3 {𝑦𝐵 ∣ ∀𝑥𝐴 𝜑} = ({𝑦𝐵 ∣ ∀𝑥𝐴 𝜑} ∩ 𝐵)
2016, 19syl6eqr 2674 . 2 (𝐴 ≠ ∅ → ( 𝑥𝐴 {𝑦𝐵𝜑} ∩ 𝐵) = {𝑦𝐵 ∣ ∀𝑥𝐴 𝜑})
2114, 20pm2.61ine 2877 1 ( 𝑥𝐴 {𝑦𝐵𝜑} ∩ 𝐵) = {𝑦𝐵 ∣ ∀𝑥𝐴 𝜑}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1483  wne 2794  wral 2912  {crab 2916  Vcvv 3200  cin 3573  wss 3574  c0 3915   ciin 4521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588  df-nul 3916  df-iin 4523
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator