| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0iin | Structured version Visualization version GIF version | ||
| Description: An empty indexed intersection is the universal class. (Contributed by NM, 20-Oct-2005.) |
| Ref | Expression |
|---|---|
| 0iin | ⊢ ∩ 𝑥 ∈ ∅ 𝐴 = V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iin 4523 | . 2 ⊢ ∩ 𝑥 ∈ ∅ 𝐴 = {𝑦 ∣ ∀𝑥 ∈ ∅ 𝑦 ∈ 𝐴} | |
| 2 | vex 3203 | . . . 4 ⊢ 𝑦 ∈ V | |
| 3 | ral0 4076 | . . . 4 ⊢ ∀𝑥 ∈ ∅ 𝑦 ∈ 𝐴 | |
| 4 | 2, 3 | 2th 254 | . . 3 ⊢ (𝑦 ∈ V ↔ ∀𝑥 ∈ ∅ 𝑦 ∈ 𝐴) |
| 5 | 4 | abbi2i 2738 | . 2 ⊢ V = {𝑦 ∣ ∀𝑥 ∈ ∅ 𝑦 ∈ 𝐴} |
| 6 | 1, 5 | eqtr4i 2647 | 1 ⊢ ∩ 𝑥 ∈ ∅ 𝐴 = V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1483 ∈ wcel 1990 {cab 2608 ∀wral 2912 Vcvv 3200 ∅c0 3915 ∩ ciin 4521 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-v 3202 df-dif 3577 df-nul 3916 df-iin 4523 |
| This theorem is referenced by: iinrab2 4583 iinvdif 4592 riin0 4594 iin0 4839 xpriindi 5258 cmpfi 21211 ptbasfi 21384 pol0N 35195 |
| Copyright terms: Public domain | W3C validator |