| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > inelros | Structured version Visualization version GIF version | ||
| Description: A ring of sets is closed under intersection. (Contributed by Thierry Arnoux, 19-Jul-2020.) |
| Ref | Expression |
|---|---|
| isros.1 | ⊢ 𝑄 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ((𝑥 ∪ 𝑦) ∈ 𝑠 ∧ (𝑥 ∖ 𝑦) ∈ 𝑠))} |
| Ref | Expression |
|---|---|
| inelros | ⊢ ((𝑆 ∈ 𝑄 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 ∩ 𝐵) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfin4 3867 | . 2 ⊢ (𝐴 ∩ 𝐵) = (𝐴 ∖ (𝐴 ∖ 𝐵)) | |
| 2 | isros.1 | . . . 4 ⊢ 𝑄 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ((𝑥 ∪ 𝑦) ∈ 𝑠 ∧ (𝑥 ∖ 𝑦) ∈ 𝑠))} | |
| 3 | 2 | difelros 30235 | . . 3 ⊢ ((𝑆 ∈ 𝑄 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 ∖ 𝐵) ∈ 𝑆) |
| 4 | 2 | difelros 30235 | . . 3 ⊢ ((𝑆 ∈ 𝑄 ∧ 𝐴 ∈ 𝑆 ∧ (𝐴 ∖ 𝐵) ∈ 𝑆) → (𝐴 ∖ (𝐴 ∖ 𝐵)) ∈ 𝑆) |
| 5 | 3, 4 | syld3an3 1371 | . 2 ⊢ ((𝑆 ∈ 𝑄 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 ∖ (𝐴 ∖ 𝐵)) ∈ 𝑆) |
| 6 | 1, 5 | syl5eqel 2705 | 1 ⊢ ((𝑆 ∈ 𝑄 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 ∩ 𝐵) ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ∀wral 2912 {crab 2916 ∖ cdif 3571 ∪ cun 3572 ∩ cin 3573 ∅c0 3915 𝒫 cpw 4158 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 |
| This theorem is referenced by: rossros 30243 |
| Copyright terms: Public domain | W3C validator |