| Step | Hyp | Ref
| Expression |
| 1 | | rossros.q |
. . . . 5
⊢ 𝑄 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ((𝑥 ∪ 𝑦) ∈ 𝑠 ∧ (𝑥 ∖ 𝑦) ∈ 𝑠))} |
| 2 | 1 | rossspw 30232 |
. . . 4
⊢ (𝑆 ∈ 𝑄 → 𝑆 ⊆ 𝒫 𝑂) |
| 3 | | elpwg 4166 |
. . . 4
⊢ (𝑆 ∈ 𝑄 → (𝑆 ∈ 𝒫 𝒫 𝑂 ↔ 𝑆 ⊆ 𝒫 𝑂)) |
| 4 | 2, 3 | mpbird 247 |
. . 3
⊢ (𝑆 ∈ 𝑄 → 𝑆 ∈ 𝒫 𝒫 𝑂) |
| 5 | 1 | 0elros 30233 |
. . 3
⊢ (𝑆 ∈ 𝑄 → ∅ ∈ 𝑆) |
| 6 | | uneq1 3760 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = 𝑥 → (𝑢 ∪ 𝑣) = (𝑥 ∪ 𝑣)) |
| 7 | 6 | eleq1d 2686 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑥 → ((𝑢 ∪ 𝑣) ∈ 𝑠 ↔ (𝑥 ∪ 𝑣) ∈ 𝑠)) |
| 8 | | difeq1 3721 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = 𝑥 → (𝑢 ∖ 𝑣) = (𝑥 ∖ 𝑣)) |
| 9 | 8 | eleq1d 2686 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑥 → ((𝑢 ∖ 𝑣) ∈ 𝑠 ↔ (𝑥 ∖ 𝑣) ∈ 𝑠)) |
| 10 | 7, 9 | anbi12d 747 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑥 → (((𝑢 ∪ 𝑣) ∈ 𝑠 ∧ (𝑢 ∖ 𝑣) ∈ 𝑠) ↔ ((𝑥 ∪ 𝑣) ∈ 𝑠 ∧ (𝑥 ∖ 𝑣) ∈ 𝑠))) |
| 11 | | uneq2 3761 |
. . . . . . . . . . . . . 14
⊢ (𝑣 = 𝑦 → (𝑥 ∪ 𝑣) = (𝑥 ∪ 𝑦)) |
| 12 | 11 | eleq1d 2686 |
. . . . . . . . . . . . 13
⊢ (𝑣 = 𝑦 → ((𝑥 ∪ 𝑣) ∈ 𝑠 ↔ (𝑥 ∪ 𝑦) ∈ 𝑠)) |
| 13 | | difeq2 3722 |
. . . . . . . . . . . . . 14
⊢ (𝑣 = 𝑦 → (𝑥 ∖ 𝑣) = (𝑥 ∖ 𝑦)) |
| 14 | 13 | eleq1d 2686 |
. . . . . . . . . . . . 13
⊢ (𝑣 = 𝑦 → ((𝑥 ∖ 𝑣) ∈ 𝑠 ↔ (𝑥 ∖ 𝑦) ∈ 𝑠)) |
| 15 | 12, 14 | anbi12d 747 |
. . . . . . . . . . . 12
⊢ (𝑣 = 𝑦 → (((𝑥 ∪ 𝑣) ∈ 𝑠 ∧ (𝑥 ∖ 𝑣) ∈ 𝑠) ↔ ((𝑥 ∪ 𝑦) ∈ 𝑠 ∧ (𝑥 ∖ 𝑦) ∈ 𝑠))) |
| 16 | 10, 15 | cbvral2v 3179 |
. . . . . . . . . . 11
⊢
(∀𝑢 ∈
𝑠 ∀𝑣 ∈ 𝑠 ((𝑢 ∪ 𝑣) ∈ 𝑠 ∧ (𝑢 ∖ 𝑣) ∈ 𝑠) ↔ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ((𝑥 ∪ 𝑦) ∈ 𝑠 ∧ (𝑥 ∖ 𝑦) ∈ 𝑠)) |
| 17 | 16 | anbi2i 730 |
. . . . . . . . . 10
⊢ ((∅
∈ 𝑠 ∧
∀𝑢 ∈ 𝑠 ∀𝑣 ∈ 𝑠 ((𝑢 ∪ 𝑣) ∈ 𝑠 ∧ (𝑢 ∖ 𝑣) ∈ 𝑠)) ↔ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ((𝑥 ∪ 𝑦) ∈ 𝑠 ∧ (𝑥 ∖ 𝑦) ∈ 𝑠))) |
| 18 | 17 | a1i 11 |
. . . . . . . . 9
⊢ (𝑠 ∈ 𝒫 𝒫
𝑂 → ((∅ ∈
𝑠 ∧ ∀𝑢 ∈ 𝑠 ∀𝑣 ∈ 𝑠 ((𝑢 ∪ 𝑣) ∈ 𝑠 ∧ (𝑢 ∖ 𝑣) ∈ 𝑠)) ↔ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ((𝑥 ∪ 𝑦) ∈ 𝑠 ∧ (𝑥 ∖ 𝑦) ∈ 𝑠)))) |
| 19 | 18 | rabbiia 3185 |
. . . . . . . 8
⊢ {𝑠 ∈ 𝒫 𝒫
𝑂 ∣ (∅ ∈
𝑠 ∧ ∀𝑢 ∈ 𝑠 ∀𝑣 ∈ 𝑠 ((𝑢 ∪ 𝑣) ∈ 𝑠 ∧ (𝑢 ∖ 𝑣) ∈ 𝑠))} = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ((𝑥 ∪ 𝑦) ∈ 𝑠 ∧ (𝑥 ∖ 𝑦) ∈ 𝑠))} |
| 20 | 1, 19 | eqtr4i 2647 |
. . . . . . 7
⊢ 𝑄 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑢 ∈ 𝑠 ∀𝑣 ∈ 𝑠 ((𝑢 ∪ 𝑣) ∈ 𝑠 ∧ (𝑢 ∖ 𝑣) ∈ 𝑠))} |
| 21 | 20 | inelros 30236 |
. . . . . 6
⊢ ((𝑆 ∈ 𝑄 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 ∩ 𝑦) ∈ 𝑆) |
| 22 | 21 | 3expb 1266 |
. . . . 5
⊢ ((𝑆 ∈ 𝑄 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 ∩ 𝑦) ∈ 𝑆) |
| 23 | 20 | difelros 30235 |
. . . . . . . . 9
⊢ ((𝑆 ∈ 𝑄 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 ∖ 𝑦) ∈ 𝑆) |
| 24 | 23 | 3expb 1266 |
. . . . . . . 8
⊢ ((𝑆 ∈ 𝑄 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 ∖ 𝑦) ∈ 𝑆) |
| 25 | 24 | snssd 4340 |
. . . . . . 7
⊢ ((𝑆 ∈ 𝑄 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → {(𝑥 ∖ 𝑦)} ⊆ 𝑆) |
| 26 | | snex 4908 |
. . . . . . . 8
⊢ {(𝑥 ∖ 𝑦)} ∈ V |
| 27 | 26 | elpw 4164 |
. . . . . . 7
⊢ ({(𝑥 ∖ 𝑦)} ∈ 𝒫 𝑆 ↔ {(𝑥 ∖ 𝑦)} ⊆ 𝑆) |
| 28 | 25, 27 | sylibr 224 |
. . . . . 6
⊢ ((𝑆 ∈ 𝑄 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → {(𝑥 ∖ 𝑦)} ∈ 𝒫 𝑆) |
| 29 | | snfi 8038 |
. . . . . . 7
⊢ {(𝑥 ∖ 𝑦)} ∈ Fin |
| 30 | 29 | a1i 11 |
. . . . . 6
⊢ ((𝑆 ∈ 𝑄 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → {(𝑥 ∖ 𝑦)} ∈ Fin) |
| 31 | | disjxsn 4646 |
. . . . . . 7
⊢
Disj 𝑡 ∈
{(𝑥 ∖ 𝑦)}𝑡 |
| 32 | 31 | a1i 11 |
. . . . . 6
⊢ ((𝑆 ∈ 𝑄 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → Disj 𝑡 ∈ {(𝑥 ∖ 𝑦)}𝑡) |
| 33 | | unisng 4452 |
. . . . . . . 8
⊢ ((𝑥 ∖ 𝑦) ∈ 𝑆 → ∪ {(𝑥 ∖ 𝑦)} = (𝑥 ∖ 𝑦)) |
| 34 | 24, 33 | syl 17 |
. . . . . . 7
⊢ ((𝑆 ∈ 𝑄 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ∪
{(𝑥 ∖ 𝑦)} = (𝑥 ∖ 𝑦)) |
| 35 | 34 | eqcomd 2628 |
. . . . . 6
⊢ ((𝑆 ∈ 𝑄 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 ∖ 𝑦) = ∪ {(𝑥 ∖ 𝑦)}) |
| 36 | | eleq1 2689 |
. . . . . . . 8
⊢ (𝑧 = {(𝑥 ∖ 𝑦)} → (𝑧 ∈ Fin ↔ {(𝑥 ∖ 𝑦)} ∈ Fin)) |
| 37 | | disjeq1 4627 |
. . . . . . . 8
⊢ (𝑧 = {(𝑥 ∖ 𝑦)} → (Disj 𝑡 ∈ 𝑧 𝑡 ↔ Disj 𝑡 ∈ {(𝑥 ∖ 𝑦)}𝑡)) |
| 38 | | unieq 4444 |
. . . . . . . . 9
⊢ (𝑧 = {(𝑥 ∖ 𝑦)} → ∪ 𝑧 = ∪
{(𝑥 ∖ 𝑦)}) |
| 39 | 38 | eqeq2d 2632 |
. . . . . . . 8
⊢ (𝑧 = {(𝑥 ∖ 𝑦)} → ((𝑥 ∖ 𝑦) = ∪ 𝑧 ↔ (𝑥 ∖ 𝑦) = ∪ {(𝑥 ∖ 𝑦)})) |
| 40 | 36, 37, 39 | 3anbi123d 1399 |
. . . . . . 7
⊢ (𝑧 = {(𝑥 ∖ 𝑦)} → ((𝑧 ∈ Fin ∧ Disj 𝑡 ∈ 𝑧 𝑡 ∧ (𝑥 ∖ 𝑦) = ∪ 𝑧) ↔ ({(𝑥 ∖ 𝑦)} ∈ Fin ∧ Disj 𝑡 ∈ {(𝑥 ∖ 𝑦)}𝑡 ∧ (𝑥 ∖ 𝑦) = ∪ {(𝑥 ∖ 𝑦)}))) |
| 41 | 40 | rspcev 3309 |
. . . . . 6
⊢ (({(𝑥 ∖ 𝑦)} ∈ 𝒫 𝑆 ∧ ({(𝑥 ∖ 𝑦)} ∈ Fin ∧ Disj 𝑡 ∈ {(𝑥 ∖ 𝑦)}𝑡 ∧ (𝑥 ∖ 𝑦) = ∪ {(𝑥 ∖ 𝑦)})) → ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡 ∈ 𝑧 𝑡 ∧ (𝑥 ∖ 𝑦) = ∪ 𝑧)) |
| 42 | 28, 30, 32, 35, 41 | syl13anc 1328 |
. . . . 5
⊢ ((𝑆 ∈ 𝑄 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡 ∈ 𝑧 𝑡 ∧ (𝑥 ∖ 𝑦) = ∪ 𝑧)) |
| 43 | 22, 42 | jca 554 |
. . . 4
⊢ ((𝑆 ∈ 𝑄 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ((𝑥 ∩ 𝑦) ∈ 𝑆 ∧ ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡 ∈ 𝑧 𝑡 ∧ (𝑥 ∖ 𝑦) = ∪ 𝑧))) |
| 44 | 43 | ralrimivva 2971 |
. . 3
⊢ (𝑆 ∈ 𝑄 → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ((𝑥 ∩ 𝑦) ∈ 𝑆 ∧ ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡 ∈ 𝑧 𝑡 ∧ (𝑥 ∖ 𝑦) = ∪ 𝑧))) |
| 45 | 4, 5, 44 | 3jca 1242 |
. 2
⊢ (𝑆 ∈ 𝑄 → (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∅ ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ((𝑥 ∩ 𝑦) ∈ 𝑆 ∧ ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡 ∈ 𝑧 𝑡 ∧ (𝑥 ∖ 𝑦) = ∪ 𝑧)))) |
| 46 | | rossros.n |
. . 3
⊢ 𝑁 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ((𝑥 ∩ 𝑦) ∈ 𝑠 ∧ ∃𝑧 ∈ 𝒫 𝑠(𝑧 ∈ Fin ∧ Disj 𝑡 ∈ 𝑧 𝑡 ∧ (𝑥 ∖ 𝑦) = ∪ 𝑧)))} |
| 47 | 46 | issros 30238 |
. 2
⊢ (𝑆 ∈ 𝑁 ↔ (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∅ ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ((𝑥 ∩ 𝑦) ∈ 𝑆 ∧ ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡 ∈ 𝑧 𝑡 ∧ (𝑥 ∖ 𝑦) = ∪ 𝑧)))) |
| 48 | 45, 47 | sylibr 224 |
1
⊢ (𝑆 ∈ 𝑄 → 𝑆 ∈ 𝑁) |