| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inss | Structured version Visualization version GIF version | ||
| Description: Inclusion of an intersection of two classes. (Contributed by NM, 30-Oct-2014.) |
| Ref | Expression |
|---|---|
| inss | ⊢ ((𝐴 ⊆ 𝐶 ∨ 𝐵 ⊆ 𝐶) → (𝐴 ∩ 𝐵) ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssinss1 3841 | . 2 ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∩ 𝐵) ⊆ 𝐶) | |
| 2 | incom 3805 | . . 3 ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) | |
| 3 | ssinss1 3841 | . . 3 ⊢ (𝐵 ⊆ 𝐶 → (𝐵 ∩ 𝐴) ⊆ 𝐶) | |
| 4 | 2, 3 | syl5eqss 3649 | . 2 ⊢ (𝐵 ⊆ 𝐶 → (𝐴 ∩ 𝐵) ⊆ 𝐶) |
| 5 | 1, 4 | jaoi 394 | 1 ⊢ ((𝐴 ⊆ 𝐶 ∨ 𝐵 ⊆ 𝐶) → (𝐴 ∩ 𝐵) ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 383 ∩ cin 3573 ⊆ wss 3574 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-in 3581 df-ss 3588 |
| This theorem is referenced by: pmatcoe1fsupp 20506 ppttop 20811 inindif 29353 iunrelexp0 37994 ntrclsk3 38368 icccncfext 40100 |
| Copyright terms: Public domain | W3C validator |