MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppttop Structured version   Visualization version   GIF version

Theorem ppttop 20811
Description: The particular point topology. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
ppttop ((𝐴𝑉𝑃𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ∈ (TopOn‘𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑃   𝑥,𝑉

Proof of Theorem ppttop
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab 3680 . . . . 5 (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ↔ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = ∅)))
2 simprl 794 . . . . . . . . 9 (((𝐴𝑉𝑃𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = ∅))) → 𝑦 ⊆ 𝒫 𝐴)
3 sspwuni 4611 . . . . . . . . 9 (𝑦 ⊆ 𝒫 𝐴 𝑦𝐴)
42, 3sylib 208 . . . . . . . 8 (((𝐴𝑉𝑃𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = ∅))) → 𝑦𝐴)
5 vuniex 6954 . . . . . . . . 9 𝑦 ∈ V
65elpw 4164 . . . . . . . 8 ( 𝑦 ∈ 𝒫 𝐴 𝑦𝐴)
74, 6sylibr 224 . . . . . . 7 (((𝐴𝑉𝑃𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = ∅))) → 𝑦 ∈ 𝒫 𝐴)
8 neq0 3930 . . . . . . . . . 10 𝑦 = ∅ ↔ ∃𝑧 𝑧 𝑦)
9 eluni2 4440 . . . . . . . . . . . 12 (𝑧 𝑦 ↔ ∃𝑥𝑦 𝑧𝑥)
10 r19.29 3072 . . . . . . . . . . . . . . 15 ((∀𝑥𝑦 (𝑃𝑥𝑥 = ∅) ∧ ∃𝑥𝑦 𝑧𝑥) → ∃𝑥𝑦 ((𝑃𝑥𝑥 = ∅) ∧ 𝑧𝑥))
11 n0i 3920 . . . . . . . . . . . . . . . . . . . 20 (𝑧𝑥 → ¬ 𝑥 = ∅)
1211adantl 482 . . . . . . . . . . . . . . . . . . 19 (((𝑃𝑥𝑥 = ∅) ∧ 𝑧𝑥) → ¬ 𝑥 = ∅)
13 simpl 473 . . . . . . . . . . . . . . . . . . . 20 (((𝑃𝑥𝑥 = ∅) ∧ 𝑧𝑥) → (𝑃𝑥𝑥 = ∅))
1413ord 392 . . . . . . . . . . . . . . . . . . 19 (((𝑃𝑥𝑥 = ∅) ∧ 𝑧𝑥) → (¬ 𝑃𝑥𝑥 = ∅))
1512, 14mt3d 140 . . . . . . . . . . . . . . . . . 18 (((𝑃𝑥𝑥 = ∅) ∧ 𝑧𝑥) → 𝑃𝑥)
1615adantl 482 . . . . . . . . . . . . . . . . 17 ((𝑥𝑦 ∧ ((𝑃𝑥𝑥 = ∅) ∧ 𝑧𝑥)) → 𝑃𝑥)
17 simpl 473 . . . . . . . . . . . . . . . . 17 ((𝑥𝑦 ∧ ((𝑃𝑥𝑥 = ∅) ∧ 𝑧𝑥)) → 𝑥𝑦)
18 elunii 4441 . . . . . . . . . . . . . . . . 17 ((𝑃𝑥𝑥𝑦) → 𝑃 𝑦)
1916, 17, 18syl2anc 693 . . . . . . . . . . . . . . . 16 ((𝑥𝑦 ∧ ((𝑃𝑥𝑥 = ∅) ∧ 𝑧𝑥)) → 𝑃 𝑦)
2019rexlimiva 3028 . . . . . . . . . . . . . . 15 (∃𝑥𝑦 ((𝑃𝑥𝑥 = ∅) ∧ 𝑧𝑥) → 𝑃 𝑦)
2110, 20syl 17 . . . . . . . . . . . . . 14 ((∀𝑥𝑦 (𝑃𝑥𝑥 = ∅) ∧ ∃𝑥𝑦 𝑧𝑥) → 𝑃 𝑦)
2221ex 450 . . . . . . . . . . . . 13 (∀𝑥𝑦 (𝑃𝑥𝑥 = ∅) → (∃𝑥𝑦 𝑧𝑥𝑃 𝑦))
2322ad2antll 765 . . . . . . . . . . . 12 (((𝐴𝑉𝑃𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = ∅))) → (∃𝑥𝑦 𝑧𝑥𝑃 𝑦))
249, 23syl5bi 232 . . . . . . . . . . 11 (((𝐴𝑉𝑃𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = ∅))) → (𝑧 𝑦𝑃 𝑦))
2524exlimdv 1861 . . . . . . . . . 10 (((𝐴𝑉𝑃𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = ∅))) → (∃𝑧 𝑧 𝑦𝑃 𝑦))
268, 25syl5bi 232 . . . . . . . . 9 (((𝐴𝑉𝑃𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = ∅))) → (¬ 𝑦 = ∅ → 𝑃 𝑦))
2726con1d 139 . . . . . . . 8 (((𝐴𝑉𝑃𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = ∅))) → (¬ 𝑃 𝑦 𝑦 = ∅))
2827orrd 393 . . . . . . 7 (((𝐴𝑉𝑃𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = ∅))) → (𝑃 𝑦 𝑦 = ∅))
29 eleq2 2690 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑃𝑥𝑃 𝑦))
30 eqeq1 2626 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 = ∅ ↔ 𝑦 = ∅))
3129, 30orbi12d 746 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑃𝑥𝑥 = ∅) ↔ (𝑃 𝑦 𝑦 = ∅)))
3231elrab 3363 . . . . . . 7 ( 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ↔ ( 𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 𝑦 𝑦 = ∅)))
337, 28, 32sylanbrc 698 . . . . . 6 (((𝐴𝑉𝑃𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = ∅))) → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)})
3433ex 450 . . . . 5 ((𝐴𝑉𝑃𝐴) → ((𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = ∅)) → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)}))
351, 34syl5bi 232 . . . 4 ((𝐴𝑉𝑃𝐴) → (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)}))
3635alrimiv 1855 . . 3 ((𝐴𝑉𝑃𝐴) → ∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)}))
37 eleq2 2690 . . . . . . . 8 (𝑥 = 𝑦 → (𝑃𝑥𝑃𝑦))
38 eqeq1 2626 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 = ∅ ↔ 𝑦 = ∅))
3937, 38orbi12d 746 . . . . . . 7 (𝑥 = 𝑦 → ((𝑃𝑥𝑥 = ∅) ↔ (𝑃𝑦𝑦 = ∅)))
4039elrab 3363 . . . . . 6 (𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ↔ (𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)))
41 eleq2 2690 . . . . . . . 8 (𝑥 = 𝑧 → (𝑃𝑥𝑃𝑧))
42 eqeq1 2626 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥 = ∅ ↔ 𝑧 = ∅))
4341, 42orbi12d 746 . . . . . . 7 (𝑥 = 𝑧 → ((𝑃𝑥𝑥 = ∅) ↔ (𝑃𝑧𝑧 = ∅)))
4443elrab 3363 . . . . . 6 (𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ↔ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅)))
4540, 44anbi12i 733 . . . . 5 ((𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)}) ↔ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅))))
46 inss1 3833 . . . . . . . . 9 (𝑦𝑧) ⊆ 𝑦
47 simprll 802 . . . . . . . . . 10 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅)))) → 𝑦 ∈ 𝒫 𝐴)
4847elpwid 4170 . . . . . . . . 9 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅)))) → 𝑦𝐴)
4946, 48syl5ss 3614 . . . . . . . 8 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅)))) → (𝑦𝑧) ⊆ 𝐴)
50 vex 3203 . . . . . . . . . 10 𝑦 ∈ V
5150inex1 4799 . . . . . . . . 9 (𝑦𝑧) ∈ V
5251elpw 4164 . . . . . . . 8 ((𝑦𝑧) ∈ 𝒫 𝐴 ↔ (𝑦𝑧) ⊆ 𝐴)
5349, 52sylibr 224 . . . . . . 7 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅)))) → (𝑦𝑧) ∈ 𝒫 𝐴)
54 ianor 509 . . . . . . . . . . 11 (¬ (𝑃𝑦𝑃𝑧) ↔ (¬ 𝑃𝑦 ∨ ¬ 𝑃𝑧))
55 elin 3796 . . . . . . . . . . 11 (𝑃 ∈ (𝑦𝑧) ↔ (𝑃𝑦𝑃𝑧))
5654, 55xchnxbir 323 . . . . . . . . . 10 𝑃 ∈ (𝑦𝑧) ↔ (¬ 𝑃𝑦 ∨ ¬ 𝑃𝑧))
57 simprlr 803 . . . . . . . . . . . 12 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅)))) → (𝑃𝑦𝑦 = ∅))
5857ord 392 . . . . . . . . . . 11 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅)))) → (¬ 𝑃𝑦𝑦 = ∅))
59 simprrr 805 . . . . . . . . . . . 12 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅)))) → (𝑃𝑧𝑧 = ∅))
6059ord 392 . . . . . . . . . . 11 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅)))) → (¬ 𝑃𝑧𝑧 = ∅))
6158, 60orim12d 883 . . . . . . . . . 10 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅)))) → ((¬ 𝑃𝑦 ∨ ¬ 𝑃𝑧) → (𝑦 = ∅ ∨ 𝑧 = ∅)))
6256, 61syl5bi 232 . . . . . . . . 9 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅)))) → (¬ 𝑃 ∈ (𝑦𝑧) → (𝑦 = ∅ ∨ 𝑧 = ∅)))
63 inss 3842 . . . . . . . . . 10 ((𝑦 ⊆ ∅ ∨ 𝑧 ⊆ ∅) → (𝑦𝑧) ⊆ ∅)
64 ss0b 3973 . . . . . . . . . . 11 (𝑦 ⊆ ∅ ↔ 𝑦 = ∅)
65 ss0b 3973 . . . . . . . . . . 11 (𝑧 ⊆ ∅ ↔ 𝑧 = ∅)
6664, 65orbi12i 543 . . . . . . . . . 10 ((𝑦 ⊆ ∅ ∨ 𝑧 ⊆ ∅) ↔ (𝑦 = ∅ ∨ 𝑧 = ∅))
67 ss0b 3973 . . . . . . . . . 10 ((𝑦𝑧) ⊆ ∅ ↔ (𝑦𝑧) = ∅)
6863, 66, 673imtr3i 280 . . . . . . . . 9 ((𝑦 = ∅ ∨ 𝑧 = ∅) → (𝑦𝑧) = ∅)
6962, 68syl6 35 . . . . . . . 8 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅)))) → (¬ 𝑃 ∈ (𝑦𝑧) → (𝑦𝑧) = ∅))
7069orrd 393 . . . . . . 7 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅)))) → (𝑃 ∈ (𝑦𝑧) ∨ (𝑦𝑧) = ∅))
71 eleq2 2690 . . . . . . . . 9 (𝑥 = (𝑦𝑧) → (𝑃𝑥𝑃 ∈ (𝑦𝑧)))
72 eqeq1 2626 . . . . . . . . 9 (𝑥 = (𝑦𝑧) → (𝑥 = ∅ ↔ (𝑦𝑧) = ∅))
7371, 72orbi12d 746 . . . . . . . 8 (𝑥 = (𝑦𝑧) → ((𝑃𝑥𝑥 = ∅) ↔ (𝑃 ∈ (𝑦𝑧) ∨ (𝑦𝑧) = ∅)))
7473elrab 3363 . . . . . . 7 ((𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ↔ ((𝑦𝑧) ∈ 𝒫 𝐴 ∧ (𝑃 ∈ (𝑦𝑧) ∨ (𝑦𝑧) = ∅)))
7553, 70, 74sylanbrc 698 . . . . . 6 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅)))) → (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)})
7675ex 450 . . . . 5 ((𝐴𝑉𝑃𝐴) → (((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅))) → (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)}))
7745, 76syl5bi 232 . . . 4 ((𝐴𝑉𝑃𝐴) → ((𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)}) → (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)}))
7877ralrimivv 2970 . . 3 ((𝐴𝑉𝑃𝐴) → ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)})
79 pwexg 4850 . . . . . 6 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
8079adantr 481 . . . . 5 ((𝐴𝑉𝑃𝐴) → 𝒫 𝐴 ∈ V)
81 rabexg 4812 . . . . 5 (𝒫 𝐴 ∈ V → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ∈ V)
8280, 81syl 17 . . . 4 ((𝐴𝑉𝑃𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ∈ V)
83 istopg 20700 . . . 4 ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ∈ V → ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ∈ Top ↔ (∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)}) ∧ ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)})))
8482, 83syl 17 . . 3 ((𝐴𝑉𝑃𝐴) → ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ∈ Top ↔ (∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)}) ∧ ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)})))
8536, 78, 84mpbir2and 957 . 2 ((𝐴𝑉𝑃𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ∈ Top)
86 pwidg 4173 . . . . . 6 (𝐴𝑉𝐴 ∈ 𝒫 𝐴)
8786adantr 481 . . . . 5 ((𝐴𝑉𝑃𝐴) → 𝐴 ∈ 𝒫 𝐴)
88 simpr 477 . . . . . 6 ((𝐴𝑉𝑃𝐴) → 𝑃𝐴)
8988orcd 407 . . . . 5 ((𝐴𝑉𝑃𝐴) → (𝑃𝐴𝐴 = ∅))
90 eleq2 2690 . . . . . . 7 (𝑥 = 𝐴 → (𝑃𝑥𝑃𝐴))
91 eqeq1 2626 . . . . . . 7 (𝑥 = 𝐴 → (𝑥 = ∅ ↔ 𝐴 = ∅))
9290, 91orbi12d 746 . . . . . 6 (𝑥 = 𝐴 → ((𝑃𝑥𝑥 = ∅) ↔ (𝑃𝐴𝐴 = ∅)))
9392elrab 3363 . . . . 5 (𝐴 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ↔ (𝐴 ∈ 𝒫 𝐴 ∧ (𝑃𝐴𝐴 = ∅)))
9487, 89, 93sylanbrc 698 . . . 4 ((𝐴𝑉𝑃𝐴) → 𝐴 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)})
95 elssuni 4467 . . . 4 (𝐴 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} → 𝐴 {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)})
9694, 95syl 17 . . 3 ((𝐴𝑉𝑃𝐴) → 𝐴 {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)})
97 ssrab2 3687 . . . . 5 {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ⊆ 𝒫 𝐴
98 sspwuni 4611 . . . . 5 ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ⊆ 𝒫 𝐴 {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ⊆ 𝐴)
9997, 98mpbi 220 . . . 4 {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ⊆ 𝐴
10099a1i 11 . . 3 ((𝐴𝑉𝑃𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ⊆ 𝐴)
10196, 100eqssd 3620 . 2 ((𝐴𝑉𝑃𝐴) → 𝐴 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)})
102 istopon 20717 . 2 ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ∈ (TopOn‘𝐴) ↔ ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ∈ Top ∧ 𝐴 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)}))
10385, 101, 102sylanbrc 698 1 ((𝐴𝑉𝑃𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ∈ (TopOn‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  wal 1481   = wceq 1483  wex 1704  wcel 1990  wral 2912  wrex 2913  {crab 2916  Vcvv 3200  cin 3573  wss 3574  c0 3915  𝒫 cpw 4158   cuni 4436  cfv 5888  Topctop 20698  TopOnctopon 20715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-top 20699  df-topon 20716
This theorem is referenced by:  pptbas  20812
  Copyright terms: Public domain W3C validator