Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  int-rightdistd Structured version   Visualization version   GIF version

Theorem int-rightdistd 38483
Description: AdditionMultiplicationRightDistribution generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.)
Hypotheses
Ref Expression
int-rightdistd.1 (𝜑𝐵 ∈ ℝ)
int-rightdistd.2 (𝜑𝐶 ∈ ℝ)
int-rightdistd.3 (𝜑𝐷 ∈ ℝ)
int-rightdistd.4 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
int-rightdistd (𝜑 → (𝐵 · (𝐶 + 𝐷)) = ((𝐴 · 𝐶) + (𝐴 · 𝐷)))

Proof of Theorem int-rightdistd
StepHypRef Expression
1 int-rightdistd.1 . . . 4 (𝜑𝐵 ∈ ℝ)
21recnd 10068 . . 3 (𝜑𝐵 ∈ ℂ)
3 int-rightdistd.2 . . . . 5 (𝜑𝐶 ∈ ℝ)
43recnd 10068 . . . 4 (𝜑𝐶 ∈ ℂ)
5 int-rightdistd.3 . . . . 5 (𝜑𝐷 ∈ ℝ)
65recnd 10068 . . . 4 (𝜑𝐷 ∈ ℂ)
74, 6addcld 10059 . . 3 (𝜑 → (𝐶 + 𝐷) ∈ ℂ)
82, 7mulcomd 10061 . 2 (𝜑 → (𝐵 · (𝐶 + 𝐷)) = ((𝐶 + 𝐷) · 𝐵))
94, 2mulcomd 10061 . . . . 5 (𝜑 → (𝐶 · 𝐵) = (𝐵 · 𝐶))
10 int-rightdistd.4 . . . . . . 7 (𝜑𝐴 = 𝐵)
1110eqcomd 2628 . . . . . 6 (𝜑𝐵 = 𝐴)
1211oveq1d 6665 . . . . 5 (𝜑 → (𝐵 · 𝐶) = (𝐴 · 𝐶))
139, 12eqtrd 2656 . . . 4 (𝜑 → (𝐶 · 𝐵) = (𝐴 · 𝐶))
146, 2mulcomd 10061 . . . . 5 (𝜑 → (𝐷 · 𝐵) = (𝐵 · 𝐷))
1511oveq1d 6665 . . . . 5 (𝜑 → (𝐵 · 𝐷) = (𝐴 · 𝐷))
1614, 15eqtrd 2656 . . . 4 (𝜑 → (𝐷 · 𝐵) = (𝐴 · 𝐷))
1713, 16oveq12d 6668 . . 3 (𝜑 → ((𝐶 · 𝐵) + (𝐷 · 𝐵)) = ((𝐴 · 𝐶) + (𝐴 · 𝐷)))
184, 2, 6, 17joinlmuladdmuld 10067 . 2 (𝜑 → ((𝐶 + 𝐷) · 𝐵) = ((𝐴 · 𝐶) + (𝐴 · 𝐷)))
198, 18eqtrd 2656 1 (𝜑 → (𝐵 · (𝐶 + 𝐷)) = ((𝐴 · 𝐶) + (𝐴 · 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  (class class class)co 6650  cr 9935   + caddc 9939   · cmul 9941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-resscn 9993  ax-addcl 9996  ax-mulcom 10000  ax-distr 10003
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator