MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intid Structured version   Visualization version   GIF version

Theorem intid 4926
Description: The intersection of all sets to which a set belongs is the singleton of that set. (Contributed by NM, 5-Jun-2009.)
Hypothesis
Ref Expression
intid.1 𝐴 ∈ V
Assertion
Ref Expression
intid {𝑥𝐴𝑥} = {𝐴}
Distinct variable group:   𝑥,𝐴

Proof of Theorem intid
StepHypRef Expression
1 snex 4908 . . 3 {𝐴} ∈ V
2 eleq2 2690 . . . 4 (𝑥 = {𝐴} → (𝐴𝑥𝐴 ∈ {𝐴}))
3 intid.1 . . . . 5 𝐴 ∈ V
43snid 4208 . . . 4 𝐴 ∈ {𝐴}
52, 4intmin3 4505 . . 3 ({𝐴} ∈ V → {𝑥𝐴𝑥} ⊆ {𝐴})
61, 5ax-mp 5 . 2 {𝑥𝐴𝑥} ⊆ {𝐴}
73elintab 4487 . . . 4 (𝐴 {𝑥𝐴𝑥} ↔ ∀𝑥(𝐴𝑥𝐴𝑥))
8 id 22 . . . 4 (𝐴𝑥𝐴𝑥)
97, 8mpgbir 1726 . . 3 𝐴 {𝑥𝐴𝑥}
10 snssi 4339 . . 3 (𝐴 {𝑥𝐴𝑥} → {𝐴} ⊆ {𝑥𝐴𝑥})
119, 10ax-mp 5 . 2 {𝐴} ⊆ {𝑥𝐴𝑥}
126, 11eqssi 3619 1 {𝑥𝐴𝑥} = {𝐴}
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  {cab 2608  Vcvv 3200  wss 3574  {csn 4177   cint 4475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-sn 4178  df-pr 4180  df-int 4476
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator