| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snex | Structured version Visualization version GIF version | ||
| Description: A singleton is a set. Theorem 7.12 of [Quine] p. 51, proved using Extensionality, Separation, Null Set, and Pairing. See also snexALT 4852. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 19-May-2013.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| snex | ⊢ {𝐴} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsn2 4190 | . . 3 ⊢ {𝐴} = {𝐴, 𝐴} | |
| 2 | preq12 4270 | . . . . . 6 ⊢ ((𝑥 = 𝐴 ∧ 𝑥 = 𝐴) → {𝑥, 𝑥} = {𝐴, 𝐴}) | |
| 3 | 2 | anidms 677 | . . . . 5 ⊢ (𝑥 = 𝐴 → {𝑥, 𝑥} = {𝐴, 𝐴}) |
| 4 | 3 | eleq1d 2686 | . . . 4 ⊢ (𝑥 = 𝐴 → ({𝑥, 𝑥} ∈ V ↔ {𝐴, 𝐴} ∈ V)) |
| 5 | zfpair2 4907 | . . . 4 ⊢ {𝑥, 𝑥} ∈ V | |
| 6 | 4, 5 | vtoclg 3266 | . . 3 ⊢ (𝐴 ∈ V → {𝐴, 𝐴} ∈ V) |
| 7 | 1, 6 | syl5eqel 2705 | . 2 ⊢ (𝐴 ∈ V → {𝐴} ∈ V) |
| 8 | snprc 4253 | . . . 4 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
| 9 | 8 | biimpi 206 | . . 3 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
| 10 | 0ex 4790 | . . 3 ⊢ ∅ ∈ V | |
| 11 | 9, 10 | syl6eqel 2709 | . 2 ⊢ (¬ 𝐴 ∈ V → {𝐴} ∈ V) |
| 12 | 7, 11 | pm2.61i 176 | 1 ⊢ {𝐴} ∈ V |
| Copyright terms: Public domain | W3C validator |