Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ipo0 Structured version   Visualization version   GIF version

Theorem ipo0 38653
Description: If the identity relation partially orders any class, then that class is the null class. (Contributed by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
ipo0 ( I Po 𝐴𝐴 = ∅)

Proof of Theorem ipo0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 equid 1939 . . . . 5 𝑥 = 𝑥
2 vex 3203 . . . . . 6 𝑥 ∈ V
32ideq 5274 . . . . 5 (𝑥 I 𝑥𝑥 = 𝑥)
41, 3mpbir 221 . . . 4 𝑥 I 𝑥
5 poirr 5046 . . . . 5 (( I Po 𝐴𝑥𝐴) → ¬ 𝑥 I 𝑥)
65ex 450 . . . 4 ( I Po 𝐴 → (𝑥𝐴 → ¬ 𝑥 I 𝑥))
74, 6mt2i 132 . . 3 ( I Po 𝐴 → ¬ 𝑥𝐴)
87eq0rdv 3979 . 2 ( I Po 𝐴𝐴 = ∅)
9 po0 5050 . . 3 I Po ∅
10 poeq2 5039 . . 3 (𝐴 = ∅ → ( I Po 𝐴 ↔ I Po ∅))
119, 10mpbiri 248 . 2 (𝐴 = ∅ → I Po 𝐴)
128, 11impbii 199 1 ( I Po 𝐴𝐴 = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196   = wceq 1483  wcel 1990  c0 3915   class class class wbr 4653   I cid 5023   Po wpo 5033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-id 5024  df-po 5035  df-xp 5120  df-rel 5121
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator