MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isablo Structured version   Visualization version   GIF version

Theorem isablo 27400
Description: The predicate "is an Abelian (commutative) group operation." (Contributed by NM, 2-Nov-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
isabl.1 𝑋 = ran 𝐺
Assertion
Ref Expression
isablo (𝐺 ∈ AbelOp ↔ (𝐺 ∈ GrpOp ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝐺𝑦) = (𝑦𝐺𝑥)))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝑋,𝑦

Proof of Theorem isablo
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 rneq 5351 . . . . 5 (𝑔 = 𝐺 → ran 𝑔 = ran 𝐺)
2 isabl.1 . . . . 5 𝑋 = ran 𝐺
31, 2syl6eqr 2674 . . . 4 (𝑔 = 𝐺 → ran 𝑔 = 𝑋)
4 raleq 3138 . . . . 5 (ran 𝑔 = 𝑋 → (∀𝑦 ∈ ran 𝑔(𝑥𝑔𝑦) = (𝑦𝑔𝑥) ↔ ∀𝑦𝑋 (𝑥𝑔𝑦) = (𝑦𝑔𝑥)))
54raleqbi1dv 3146 . . . 4 (ran 𝑔 = 𝑋 → (∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔(𝑥𝑔𝑦) = (𝑦𝑔𝑥) ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝑔𝑦) = (𝑦𝑔𝑥)))
63, 5syl 17 . . 3 (𝑔 = 𝐺 → (∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔(𝑥𝑔𝑦) = (𝑦𝑔𝑥) ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝑔𝑦) = (𝑦𝑔𝑥)))
7 oveq 6656 . . . . 5 (𝑔 = 𝐺 → (𝑥𝑔𝑦) = (𝑥𝐺𝑦))
8 oveq 6656 . . . . 5 (𝑔 = 𝐺 → (𝑦𝑔𝑥) = (𝑦𝐺𝑥))
97, 8eqeq12d 2637 . . . 4 (𝑔 = 𝐺 → ((𝑥𝑔𝑦) = (𝑦𝑔𝑥) ↔ (𝑥𝐺𝑦) = (𝑦𝐺𝑥)))
1092ralbidv 2989 . . 3 (𝑔 = 𝐺 → (∀𝑥𝑋𝑦𝑋 (𝑥𝑔𝑦) = (𝑦𝑔𝑥) ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝐺𝑦) = (𝑦𝐺𝑥)))
116, 10bitrd 268 . 2 (𝑔 = 𝐺 → (∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔(𝑥𝑔𝑦) = (𝑦𝑔𝑥) ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝐺𝑦) = (𝑦𝐺𝑥)))
12 df-ablo 27399 . 2 AbelOp = {𝑔 ∈ GrpOp ∣ ∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔(𝑥𝑔𝑦) = (𝑦𝑔𝑥)}
1311, 12elrab2 3366 1 (𝐺 ∈ AbelOp ↔ (𝐺 ∈ GrpOp ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝐺𝑦) = (𝑦𝐺𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  ran crn 5115  (class class class)co 6650  GrpOpcgr 27343  AbelOpcablo 27398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-cnv 5122  df-dm 5124  df-rn 5125  df-iota 5851  df-fv 5896  df-ov 6653  df-ablo 27399
This theorem is referenced by:  ablogrpo  27401  ablocom  27402  isabloi  27405
  Copyright terms: Public domain W3C validator