| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isconn | Structured version Visualization version GIF version | ||
| Description: The predicate 𝐽 is a connected topology . (Contributed by FL, 17-Nov-2008.) |
| Ref | Expression |
|---|---|
| isconn.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| isconn | ⊢ (𝐽 ∈ Conn ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . 4 ⊢ (𝑗 = 𝐽 → 𝑗 = 𝐽) | |
| 2 | fveq2 6191 | . . . 4 ⊢ (𝑗 = 𝐽 → (Clsd‘𝑗) = (Clsd‘𝐽)) | |
| 3 | 1, 2 | ineq12d 3815 | . . 3 ⊢ (𝑗 = 𝐽 → (𝑗 ∩ (Clsd‘𝑗)) = (𝐽 ∩ (Clsd‘𝐽))) |
| 4 | unieq 4444 | . . . . 5 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = ∪ 𝐽) | |
| 5 | isconn.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
| 6 | 4, 5 | syl6eqr 2674 | . . . 4 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = 𝑋) |
| 7 | 6 | preq2d 4275 | . . 3 ⊢ (𝑗 = 𝐽 → {∅, ∪ 𝑗} = {∅, 𝑋}) |
| 8 | 3, 7 | eqeq12d 2637 | . 2 ⊢ (𝑗 = 𝐽 → ((𝑗 ∩ (Clsd‘𝑗)) = {∅, ∪ 𝑗} ↔ (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋})) |
| 9 | df-conn 21215 | . 2 ⊢ Conn = {𝑗 ∈ Top ∣ (𝑗 ∩ (Clsd‘𝑗)) = {∅, ∪ 𝑗}} | |
| 10 | 8, 9 | elrab2 3366 | 1 ⊢ (𝐽 ∈ Conn ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋})) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∩ cin 3573 ∅c0 3915 {cpr 4179 ∪ cuni 4436 ‘cfv 5888 Topctop 20698 Clsdccld 20820 Conncconn 21214 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-conn 21215 |
| This theorem is referenced by: isconn2 21217 connclo 21218 conndisj 21219 conntop 21220 |
| Copyright terms: Public domain | W3C validator |