MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isconn Structured version   Visualization version   Unicode version

Theorem isconn 21216
Description: The predicate  J is a connected topology . (Contributed by FL, 17-Nov-2008.)
Hypothesis
Ref Expression
isconn.1  |-  X  = 
U. J
Assertion
Ref Expression
isconn  |-  ( J  e. Conn 
<->  ( J  e.  Top  /\  ( J  i^i  ( Clsd `  J ) )  =  { (/) ,  X } ) )

Proof of Theorem isconn
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . 4  |-  ( j  =  J  ->  j  =  J )
2 fveq2 6191 . . . 4  |-  ( j  =  J  ->  ( Clsd `  j )  =  ( Clsd `  J
) )
31, 2ineq12d 3815 . . 3  |-  ( j  =  J  ->  (
j  i^i  ( Clsd `  j ) )  =  ( J  i^i  ( Clsd `  J ) ) )
4 unieq 4444 . . . . 5  |-  ( j  =  J  ->  U. j  =  U. J )
5 isconn.1 . . . . 5  |-  X  = 
U. J
64, 5syl6eqr 2674 . . . 4  |-  ( j  =  J  ->  U. j  =  X )
76preq2d 4275 . . 3  |-  ( j  =  J  ->  { (/) , 
U. j }  =  { (/) ,  X }
)
83, 7eqeq12d 2637 . 2  |-  ( j  =  J  ->  (
( j  i^i  ( Clsd `  j ) )  =  { (/) ,  U. j }  <->  ( J  i^i  ( Clsd `  J )
)  =  { (/) ,  X } ) )
9 df-conn 21215 . 2  |- Conn  =  {
j  e.  Top  | 
( j  i^i  ( Clsd `  j ) )  =  { (/) ,  U. j } }
108, 9elrab2 3366 1  |-  ( J  e. Conn 
<->  ( J  e.  Top  /\  ( J  i^i  ( Clsd `  J ) )  =  { (/) ,  X } ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    i^i cin 3573   (/)c0 3915   {cpr 4179   U.cuni 4436   ` cfv 5888   Topctop 20698   Clsdccld 20820  Conncconn 21214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-conn 21215
This theorem is referenced by:  isconn2  21217  connclo  21218  conndisj  21219  conntop  21220
  Copyright terms: Public domain W3C validator