MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isgrp Structured version   Visualization version   GIF version

Theorem isgrp 17428
Description: The predicate "is a group." (This theorem demonstrates the use of symbols as variable names, first proposed by FL in 2010.) (Contributed by NM, 17-Oct-2012.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
isgrp.b 𝐵 = (Base‘𝐺)
isgrp.p + = (+g𝐺)
isgrp.z 0 = (0g𝐺)
Assertion
Ref Expression
isgrp (𝐺 ∈ Grp ↔ (𝐺 ∈ Mnd ∧ ∀𝑎𝐵𝑚𝐵 (𝑚 + 𝑎) = 0 ))
Distinct variable groups:   𝑚,𝑎,𝐵   𝐺,𝑎,𝑚
Allowed substitution hints:   + (𝑚,𝑎)   0 (𝑚,𝑎)

Proof of Theorem isgrp
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . 4 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
2 isgrp.b . . . 4 𝐵 = (Base‘𝐺)
31, 2syl6eqr 2674 . . 3 (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵)
4 fveq2 6191 . . . . . . 7 (𝑔 = 𝐺 → (+g𝑔) = (+g𝐺))
5 isgrp.p . . . . . . 7 + = (+g𝐺)
64, 5syl6eqr 2674 . . . . . 6 (𝑔 = 𝐺 → (+g𝑔) = + )
76oveqd 6667 . . . . 5 (𝑔 = 𝐺 → (𝑚(+g𝑔)𝑎) = (𝑚 + 𝑎))
8 fveq2 6191 . . . . . 6 (𝑔 = 𝐺 → (0g𝑔) = (0g𝐺))
9 isgrp.z . . . . . 6 0 = (0g𝐺)
108, 9syl6eqr 2674 . . . . 5 (𝑔 = 𝐺 → (0g𝑔) = 0 )
117, 10eqeq12d 2637 . . . 4 (𝑔 = 𝐺 → ((𝑚(+g𝑔)𝑎) = (0g𝑔) ↔ (𝑚 + 𝑎) = 0 ))
123, 11rexeqbidv 3153 . . 3 (𝑔 = 𝐺 → (∃𝑚 ∈ (Base‘𝑔)(𝑚(+g𝑔)𝑎) = (0g𝑔) ↔ ∃𝑚𝐵 (𝑚 + 𝑎) = 0 ))
133, 12raleqbidv 3152 . 2 (𝑔 = 𝐺 → (∀𝑎 ∈ (Base‘𝑔)∃𝑚 ∈ (Base‘𝑔)(𝑚(+g𝑔)𝑎) = (0g𝑔) ↔ ∀𝑎𝐵𝑚𝐵 (𝑚 + 𝑎) = 0 ))
14 df-grp 17425 . 2 Grp = {𝑔 ∈ Mnd ∣ ∀𝑎 ∈ (Base‘𝑔)∃𝑚 ∈ (Base‘𝑔)(𝑚(+g𝑔)𝑎) = (0g𝑔)}
1513, 14elrab2 3366 1 (𝐺 ∈ Grp ↔ (𝐺 ∈ Mnd ∧ ∀𝑎𝐵𝑚𝐵 (𝑚 + 𝑎) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  cfv 5888  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  0gc0g 16100  Mndcmnd 17294  Grpcgrp 17422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-grp 17425
This theorem is referenced by:  grpmnd  17429  grpinvex  17432  grppropd  17437  isgrpd2e  17441  grp1  17522  ghmgrp  17539  2zrngagrp  41943
  Copyright terms: Public domain W3C validator