Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isomliN Structured version   Visualization version   GIF version

Theorem isomliN 34526
Description: Properties that determine an orthomodular lattice. (Contributed by NM, 18-Sep-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
isomli.0 𝐾 ∈ OL
isomli.b 𝐵 = (Base‘𝐾)
isomli.l = (le‘𝐾)
isomli.j = (join‘𝐾)
isomli.m = (meet‘𝐾)
isomli.o = (oc‘𝐾)
isomli.7 ((𝑥𝐵𝑦𝐵) → (𝑥 𝑦𝑦 = (𝑥 (𝑦 ( 𝑥)))))
Assertion
Ref Expression
isomliN 𝐾 ∈ OML
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦
Allowed substitution hints:   (𝑥,𝑦)   (𝑥,𝑦)   (𝑥,𝑦)   (𝑥,𝑦)

Proof of Theorem isomliN
StepHypRef Expression
1 isomli.0 . 2 𝐾 ∈ OL
2 isomli.7 . . 3 ((𝑥𝐵𝑦𝐵) → (𝑥 𝑦𝑦 = (𝑥 (𝑦 ( 𝑥)))))
32rgen2a 2977 . 2 𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 = (𝑥 (𝑦 ( 𝑥))))
4 isomli.b . . 3 𝐵 = (Base‘𝐾)
5 isomli.l . . 3 = (le‘𝐾)
6 isomli.j . . 3 = (join‘𝐾)
7 isomli.m . . 3 = (meet‘𝐾)
8 isomli.o . . 3 = (oc‘𝐾)
94, 5, 6, 7, 8isoml 34525 . 2 (𝐾 ∈ OML ↔ (𝐾 ∈ OL ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 = (𝑥 (𝑦 ( 𝑥))))))
101, 3, 9mpbir2an 955 1 𝐾 ∈ OML
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912   class class class wbr 4653  cfv 5888  (class class class)co 6650  Basecbs 15857  lecple 15948  occoc 15949  joincjn 16944  meetcmee 16945  OLcol 34461  OMLcoml 34462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-oml 34466
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator