![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isomliN | Structured version Visualization version GIF version |
Description: Properties that determine an orthomodular lattice. (Contributed by NM, 18-Sep-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
isomli.0 | ⊢ 𝐾 ∈ OL |
isomli.b | ⊢ 𝐵 = (Base‘𝐾) |
isomli.l | ⊢ ≤ = (le‘𝐾) |
isomli.j | ⊢ ∨ = (join‘𝐾) |
isomli.m | ⊢ ∧ = (meet‘𝐾) |
isomli.o | ⊢ ⊥ = (oc‘𝐾) |
isomli.7 | ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 ≤ 𝑦 → 𝑦 = (𝑥 ∨ (𝑦 ∧ ( ⊥ ‘𝑥))))) |
Ref | Expression |
---|---|
isomliN | ⊢ 𝐾 ∈ OML |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isomli.0 | . 2 ⊢ 𝐾 ∈ OL | |
2 | isomli.7 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 ≤ 𝑦 → 𝑦 = (𝑥 ∨ (𝑦 ∧ ( ⊥ ‘𝑥))))) | |
3 | 2 | rgen2a 2977 | . 2 ⊢ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 → 𝑦 = (𝑥 ∨ (𝑦 ∧ ( ⊥ ‘𝑥)))) |
4 | isomli.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
5 | isomli.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
6 | isomli.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
7 | isomli.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
8 | isomli.o | . . 3 ⊢ ⊥ = (oc‘𝐾) | |
9 | 4, 5, 6, 7, 8 | isoml 34525 | . 2 ⊢ (𝐾 ∈ OML ↔ (𝐾 ∈ OL ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 → 𝑦 = (𝑥 ∨ (𝑦 ∧ ( ⊥ ‘𝑥)))))) |
10 | 1, 3, 9 | mpbir2an 955 | 1 ⊢ 𝐾 ∈ OML |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 class class class wbr 4653 ‘cfv 5888 (class class class)co 6650 Basecbs 15857 lecple 15948 occoc 15949 joincjn 16944 meetcmee 16945 OLcol 34461 OMLcoml 34462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 df-oml 34466 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |