![]() |
Metamath
Proof Explorer Theorem List (p. 346 of 426) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27775) |
![]() (27776-29300) |
![]() (29301-42551) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | olop 34501 | An ortholattice is an orthoposet. (Contributed by NM, 18-Sep-2011.) |
⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) | ||
Theorem | olposN 34502 | An ortholattice is a poset. (Contributed by NM, 16-Oct-2011.) (New usage is discouraged.) |
⊢ (𝐾 ∈ OL → 𝐾 ∈ Poset) | ||
Theorem | isolatiN 34503 | Properties that determine an ortholattice. (Contributed by NM, 18-Sep-2011.) (New usage is discouraged.) |
⊢ 𝐾 ∈ Lat & ⊢ 𝐾 ∈ OP ⇒ ⊢ 𝐾 ∈ OL | ||
Theorem | oldmm1 34504 | De Morgan's law for meet in an ortholattice. (chdmm1 28384 analog.) (Contributed by NM, 6-Nov-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) ⇒ ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘(𝑋 ∧ 𝑌)) = (( ⊥ ‘𝑋) ∨ ( ⊥ ‘𝑌))) | ||
Theorem | oldmm2 34505 | De Morgan's law for meet in an ortholattice. (chdmm2 28385 analog.) (Contributed by NM, 6-Nov-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) ⇒ ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘(( ⊥ ‘𝑋) ∧ 𝑌)) = (𝑋 ∨ ( ⊥ ‘𝑌))) | ||
Theorem | oldmm3N 34506 | De Morgan's law for meet in an ortholattice. (chdmm3 28386 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) ⇒ ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) = (( ⊥ ‘𝑋) ∨ 𝑌)) | ||
Theorem | oldmm4 34507 | De Morgan's law for meet in an ortholattice. (chdmm4 28387 analog.) (Contributed by NM, 6-Nov-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) ⇒ ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘(( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌))) = (𝑋 ∨ 𝑌)) | ||
Theorem | oldmj1 34508 | De Morgan's law for join in an ortholattice. (chdmj1 28388 analog.) (Contributed by NM, 6-Nov-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) ⇒ ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘(𝑋 ∨ 𝑌)) = (( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌))) | ||
Theorem | oldmj2 34509 | De Morgan's law for join in an ortholattice. (chdmj2 28389 analog.) (Contributed by NM, 7-Nov-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) ⇒ ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘(( ⊥ ‘𝑋) ∨ 𝑌)) = (𝑋 ∧ ( ⊥ ‘𝑌))) | ||
Theorem | oldmj3 34510 | De Morgan's law for join in an ortholattice. (chdmj3 28390 analog.) (Contributed by NM, 7-Nov-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) ⇒ ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘(𝑋 ∨ ( ⊥ ‘𝑌))) = (( ⊥ ‘𝑋) ∧ 𝑌)) | ||
Theorem | oldmj4 34511 | De Morgan's law for join in an ortholattice. (chdmj4 28391 analog.) (Contributed by NM, 7-Nov-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) ⇒ ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘(( ⊥ ‘𝑋) ∨ ( ⊥ ‘𝑌))) = (𝑋 ∧ 𝑌)) | ||
Theorem | olj01 34512 | An ortholattice element joined with zero equals itself. (chj0 28356 analog.) (Contributed by NM, 19-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 0 = (0.‘𝐾) ⇒ ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ 0 ) = 𝑋) | ||
Theorem | olj02 34513 | An ortholattice element joined with zero equals itself. (Contributed by NM, 28-Jan-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 0 = (0.‘𝐾) ⇒ ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ( 0 ∨ 𝑋) = 𝑋) | ||
Theorem | olm11 34514 | The meet of an ortholattice element with one equals itself. (chm1i 28315 analog.) (Contributed by NM, 22-May-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 1 = (1.‘𝐾) ⇒ ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 1 ) = 𝑋) | ||
Theorem | olm12 34515 | The meet of an ortholattice element with one equals itself. (Contributed by NM, 22-May-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 1 = (1.‘𝐾) ⇒ ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ( 1 ∧ 𝑋) = 𝑋) | ||
Theorem | latmassOLD 34516 | Ortholattice meet is associative. (This can also be proved for lattices with a longer proof.) (inass 3823 analog.) (Contributed by NM, 7-Nov-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ OL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ∧ 𝑌) ∧ 𝑍) = (𝑋 ∧ (𝑌 ∧ 𝑍))) | ||
Theorem | latm12 34517 | A rearrangement of lattice meet. (in12 3824 analog.) (Contributed by NM, 8-Nov-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ OL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∧ (𝑌 ∧ 𝑍)) = (𝑌 ∧ (𝑋 ∧ 𝑍))) | ||
Theorem | latm32 34518 | A rearrangement of lattice meet. (in12 3824 analog.) (Contributed by NM, 13-Nov-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ OL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ∧ 𝑌) ∧ 𝑍) = ((𝑋 ∧ 𝑍) ∧ 𝑌)) | ||
Theorem | latmrot 34519 | Rotate lattice meet of 3 classes. (Contributed by NM, 9-Oct-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ OL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ∧ 𝑌) ∧ 𝑍) = ((𝑍 ∧ 𝑋) ∧ 𝑌)) | ||
Theorem | latm4 34520 | Rearrangement of lattice meet of 4 classes. (in4 3829 analog.) (Contributed by NM, 8-Nov-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ OL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 ∧ 𝑌) ∧ (𝑍 ∧ 𝑊)) = ((𝑋 ∧ 𝑍) ∧ (𝑌 ∧ 𝑊))) | ||
Theorem | latmmdiN 34521 | Lattice meet distributes over itself. (inindi 3830 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ OL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∧ (𝑌 ∧ 𝑍)) = ((𝑋 ∧ 𝑌) ∧ (𝑋 ∧ 𝑍))) | ||
Theorem | latmmdir 34522 | Lattice meet distributes over itself. (inindir 3831 analog.) (Contributed by NM, 6-Jun-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ OL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ∧ 𝑌) ∧ 𝑍) = ((𝑋 ∧ 𝑍) ∧ (𝑌 ∧ 𝑍))) | ||
Theorem | olm01 34523 | Meet with lattice zero is zero. (chm0 28350 analog.) (Contributed by NM, 8-Nov-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 0 = (0.‘𝐾) ⇒ ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 0 ) = 0 ) | ||
Theorem | olm02 34524 | Meet with lattice zero is zero. (Contributed by NM, 9-Oct-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 0 = (0.‘𝐾) ⇒ ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ( 0 ∧ 𝑋) = 0 ) | ||
Theorem | isoml 34525* | The predicate "is an orthomodular lattice." (Contributed by NM, 18-Sep-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) ⇒ ⊢ (𝐾 ∈ OML ↔ (𝐾 ∈ OL ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 → 𝑦 = (𝑥 ∨ (𝑦 ∧ ( ⊥ ‘𝑥)))))) | ||
Theorem | isomliN 34526* | Properties that determine an orthomodular lattice. (Contributed by NM, 18-Sep-2011.) (New usage is discouraged.) |
⊢ 𝐾 ∈ OL & ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 ≤ 𝑦 → 𝑦 = (𝑥 ∨ (𝑦 ∧ ( ⊥ ‘𝑥))))) ⇒ ⊢ 𝐾 ∈ OML | ||
Theorem | omlol 34527 | An orthomodular lattice is an ortholattice. (Contributed by NM, 18-Sep-2011.) |
⊢ (𝐾 ∈ OML → 𝐾 ∈ OL) | ||
Theorem | omlop 34528 | An orthomodular lattice is an orthoposet. (Contributed by NM, 6-Nov-2011.) |
⊢ (𝐾 ∈ OML → 𝐾 ∈ OP) | ||
Theorem | omllat 34529 | An orthomodular lattice is a lattice. (Contributed by NM, 6-Nov-2011.) |
⊢ (𝐾 ∈ OML → 𝐾 ∈ Lat) | ||
Theorem | omllaw 34530 | The orthomodular law. (Contributed by NM, 18-Sep-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) ⇒ ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → 𝑌 = (𝑋 ∨ (𝑌 ∧ ( ⊥ ‘𝑋))))) | ||
Theorem | omllaw2N 34531 | Variation of orthomodular law. Definition of OML law in [Kalmbach] p. 22. (pjoml2i 28444 analog.) (Contributed by NM, 6-Nov-2011.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) ⇒ ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → (𝑋 ∨ (( ⊥ ‘𝑋) ∧ 𝑌)) = 𝑌)) | ||
Theorem | omllaw3 34532 | Orthomodular law equivalent. Theorem 2(ii) of [Kalmbach] p. 22. (pjoml 28295 analog.) (Contributed by NM, 19-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 0 = (0.‘𝐾) ⇒ ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ (𝑌 ∧ ( ⊥ ‘𝑋)) = 0 ) → 𝑋 = 𝑌)) | ||
Theorem | omllaw4 34533 | Orthomodular law equivalent. Remark in [Holland95] p. 223. (Contributed by NM, 19-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) ⇒ ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → (( ⊥ ‘(( ⊥ ‘𝑋) ∧ 𝑌)) ∧ 𝑌) = 𝑋)) | ||
Theorem | omllaw5N 34534 | The orthomodular law. Remark in [Kalmbach] p. 22. (pjoml5 28472 analog.) (Contributed by NM, 14-Nov-2011.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) ⇒ ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ (( ⊥ ‘𝑋) ∧ (𝑋 ∨ 𝑌))) = (𝑋 ∨ 𝑌)) | ||
Theorem | cmtcomlemN 34535 | Lemma for cmtcomN 34536. (cmcmlem 28450 analog.) (Contributed by NM, 7-Nov-2011.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐶 = (cm‘𝐾) ⇒ ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 → 𝑌𝐶𝑋)) | ||
Theorem | cmtcomN 34536 | Commutation is symmetric. Theorem 2(v) in [Kalmbach] p. 22. (cmcmi 28451 analog.) (Contributed by NM, 7-Nov-2011.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐶 = (cm‘𝐾) ⇒ ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ 𝑌𝐶𝑋)) | ||
Theorem | cmt2N 34537 | Commutation with orthocomplement. Theorem 2.3(i) of [Beran] p. 39. (cmcm2i 28452 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐶 = (cm‘𝐾) ⇒ ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ 𝑋𝐶( ⊥ ‘𝑌))) | ||
Theorem | cmt3N 34538 | Commutation with orthocomplement. Remark in [Kalmbach] p. 23. (cmcm4i 28454 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐶 = (cm‘𝐾) ⇒ ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ ( ⊥ ‘𝑋)𝐶𝑌)) | ||
Theorem | cmt4N 34539 | Commutation with orthocomplement. Remark in [Kalmbach] p. 23. (cmcm4i 28454 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐶 = (cm‘𝐾) ⇒ ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ ( ⊥ ‘𝑋)𝐶( ⊥ ‘𝑌))) | ||
Theorem | cmtbr2N 34540 | Alternate definition of the commutes relation. Remark in [Kalmbach] p. 23. (cmbr2i 28455 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐶 = (cm‘𝐾) ⇒ ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ 𝑋 = ((𝑋 ∨ 𝑌) ∧ (𝑋 ∨ ( ⊥ ‘𝑌))))) | ||
Theorem | cmtbr3N 34541 | Alternate definition for the commutes relation. Lemma 3 of [Kalmbach] p. 23. (cmbr3 28467 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐶 = (cm‘𝐾) ⇒ ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) = (𝑋 ∧ 𝑌))) | ||
Theorem | cmtbr4N 34542 | Alternate definition for the commutes relation. (cmbr4i 28460 analog.) (Contributed by NM, 10-Nov-2011.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐶 = (cm‘𝐾) ⇒ ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) ≤ 𝑌)) | ||
Theorem | lecmtN 34543 | Ordered elements commute. (lecmi 28461 analog.) (Contributed by NM, 10-Nov-2011.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐶 = (cm‘𝐾) ⇒ ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → 𝑋𝐶𝑌)) | ||
Theorem | cmtidN 34544 | Any element commutes with itself. (cmidi 28469 analog.) (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐶 = (cm‘𝐾) ⇒ ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵) → 𝑋𝐶𝑋) | ||
Theorem | omlfh1N 34545 | Foulis-Holland Theorem, part 1. If any 2 pairs in a triple of orthomodular lattice elements commute, the triple is distributive. Part of Theorem 5 in [Kalmbach] p. 25. (fh1 28477 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐶 = (cm‘𝐾) ⇒ ⊢ ((𝐾 ∈ OML ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋𝐶𝑌 ∧ 𝑋𝐶𝑍)) → (𝑋 ∧ (𝑌 ∨ 𝑍)) = ((𝑋 ∧ 𝑌) ∨ (𝑋 ∧ 𝑍))) | ||
Theorem | omlfh3N 34546 | Foulis-Holland Theorem, part 3. Dual of omlfh1N 34545. (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐶 = (cm‘𝐾) ⇒ ⊢ ((𝐾 ∈ OML ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋𝐶𝑌 ∧ 𝑋𝐶𝑍)) → (𝑋 ∨ (𝑌 ∧ 𝑍)) = ((𝑋 ∨ 𝑌) ∧ (𝑋 ∨ 𝑍))) | ||
Theorem | omlmod1i2N 34547 | Analogue of modular law atmod1i2 35145 that holds in any OML. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐶 = (cm‘𝐾) ⇒ ⊢ ((𝐾 ∈ OML ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑍 ∧ 𝑌𝐶𝑍)) → (𝑋 ∨ (𝑌 ∧ 𝑍)) = ((𝑋 ∨ 𝑌) ∧ 𝑍)) | ||
Theorem | omlspjN 34548 | Contraction of a Sasaki projection. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) ⇒ ⊢ ((𝐾 ∈ OML ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → ((𝑋 ∨ ( ⊥ ‘𝑌)) ∧ 𝑌) = 𝑋) | ||
Syntax | ccvr 34549 | Extend class notation with covers relation. |
class ⋖ | ||
Syntax | catm 34550 | Extend class notation with atoms. |
class Atoms | ||
Syntax | cal 34551 | Extend class notation with atomic lattices. |
class AtLat | ||
Syntax | clc 34552 | Extend class notation with lattices with the covering property. |
class CvLat | ||
Definition | df-covers 34553* | Define the covers relation ("is covered by") for posets. "𝑎 is covered by 𝑏 " means that 𝑎 is strictly less than 𝑏 and there is nothing in between. See cvrval 34556 for the relation form. (Contributed by NM, 18-Sep-2011.) |
⊢ ⋖ = (𝑝 ∈ V ↦ {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (Base‘𝑝) ∧ 𝑏 ∈ (Base‘𝑝)) ∧ 𝑎(lt‘𝑝)𝑏 ∧ ¬ ∃𝑧 ∈ (Base‘𝑝)(𝑎(lt‘𝑝)𝑧 ∧ 𝑧(lt‘𝑝)𝑏))}) | ||
Definition | df-ats 34554* | Define the class of poset atoms. (Contributed by NM, 18-Sep-2011.) |
⊢ Atoms = (𝑝 ∈ V ↦ {𝑎 ∈ (Base‘𝑝) ∣ (0.‘𝑝)( ⋖ ‘𝑝)𝑎}) | ||
Theorem | cvrfval 34555* | Value of covers relation "is covered by". (Contributed by NM, 18-Sep-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝐴 → 𝐶 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 < 𝑦 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑥 < 𝑧 ∧ 𝑧 < 𝑦))}) | ||
Theorem | cvrval 34556* | Binary relation expressing 𝐵 covers 𝐴, which means that 𝐵 is larger than 𝐴 and there is nothing in between. Definition 3.2.18 of [PtakPulmannova] p. 68. (cvbr 29141 analog.) (Contributed by NM, 18-Sep-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑌)))) | ||
Theorem | cvrlt 34557 | The covers relation implies the less-than relation. (cvpss 29144 analog.) (Contributed by NM, 8-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 < 𝑌) | ||
Theorem | cvrnbtwn 34558 | There is no element between the two arguments of the covers relation. (cvnbtwn 29145 analog.) (Contributed by NM, 18-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → ¬ (𝑋 < 𝑍 ∧ 𝑍 < 𝑌)) | ||
Theorem | ncvr1 34559 | No element covers the lattice unit. (Contributed by NM, 8-Jul-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 1 = (1.‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ¬ 1 𝐶𝑋) | ||
Theorem | cvrletrN 34560 | Property of an element above a covering. (Contributed by NM, 7-Dec-2012.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋𝐶𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 < 𝑍)) | ||
Theorem | cvrval2 34561* | Binary relation expressing 𝑌 covers 𝑋. Definition of covers in [Kalmbach] p. 15. (cvbr2 29142 analog.) (Contributed by NM, 16-Nov-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ∀𝑧 ∈ 𝐵 ((𝑋 < 𝑧 ∧ 𝑧 ≤ 𝑌) → 𝑧 = 𝑌)))) | ||
Theorem | cvrnbtwn2 34562 | The covers relation implies no in-betweenness. (cvnbtwn2 29146 analog.) (Contributed by NM, 17-Nov-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → ((𝑋 < 𝑍 ∧ 𝑍 ≤ 𝑌) ↔ 𝑍 = 𝑌)) | ||
Theorem | cvrnbtwn3 34563 | The covers relation implies no in-betweenness. (cvnbtwn3 29147 analog.) (Contributed by NM, 4-Nov-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → ((𝑋 ≤ 𝑍 ∧ 𝑍 < 𝑌) ↔ 𝑋 = 𝑍)) | ||
Theorem | cvrcon3b 34564 | Contraposition law for the covers relation. (cvcon3 29143 analog.) (Contributed by NM, 4-Nov-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ ( ⊥ ‘𝑌)𝐶( ⊥ ‘𝑋))) | ||
Theorem | cvrle 34565 | The covers relation implies the less-than-or-equal relation. (Contributed by NM, 12-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 ≤ 𝑌) | ||
Theorem | cvrnbtwn4 34566 | The covers relation implies no in-betweenness. Part of proof of Lemma 7.5.1 of [MaedaMaeda] p. 31. (cvnbtwn4 29148 analog.) (Contributed by NM, 18-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → ((𝑋 ≤ 𝑍 ∧ 𝑍 ≤ 𝑌) ↔ (𝑋 = 𝑍 ∨ 𝑍 = 𝑌))) | ||
Theorem | cvrnle 34567 | The covers relation implies the negation of the reverse less-than-or-equal relation. (Contributed by NM, 18-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ (((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → ¬ 𝑌 ≤ 𝑋) | ||
Theorem | cvrne 34568 | The covers relation implies inequality. (Contributed by NM, 13-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 ≠ 𝑌) | ||
Theorem | cvrnrefN 34569 | The covers relation is not reflexive. (cvnref 29150 analog.) (Contributed by NM, 1-Nov-2012.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → ¬ 𝑋𝐶𝑋) | ||
Theorem | cvrcmp 34570 | If two lattice elements that cover a third are comparable, then they are equal. (Contributed by NM, 6-Feb-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑍𝐶𝑋 ∧ 𝑍𝐶𝑌)) → (𝑋 ≤ 𝑌 ↔ 𝑋 = 𝑌)) | ||
Theorem | cvrcmp2 34571 | If two lattice elements covered by a third are comparable, then they are equal. (Contributed by NM, 20-Jun-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ ((𝐾 ∈ OP ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋𝐶𝑍 ∧ 𝑌𝐶𝑍)) → (𝑋 ≤ 𝑌 ↔ 𝑋 = 𝑌)) | ||
Theorem | pats 34572* | The set of atoms in a poset. (Contributed by NM, 18-Sep-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝐷 → 𝐴 = {𝑥 ∈ 𝐵 ∣ 0 𝐶𝑥}) | ||
Theorem | isat 34573 | The predicate "is an atom". (ela 29198 analog.) (Contributed by NM, 18-Sep-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝐷 → (𝑃 ∈ 𝐴 ↔ (𝑃 ∈ 𝐵 ∧ 0 𝐶𝑃))) | ||
Theorem | isat2 34574 | The predicate "is an atom". (elatcv0 29200 analog.) (Contributed by NM, 18-Jun-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐷 ∧ 𝑃 ∈ 𝐵) → (𝑃 ∈ 𝐴 ↔ 0 𝐶𝑃)) | ||
Theorem | atcvr0 34575 | An atom covers zero. (atcv0 29201 analog.) (Contributed by NM, 4-Nov-2011.) |
⊢ 0 = (0.‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐷 ∧ 𝑃 ∈ 𝐴) → 0 𝐶𝑃) | ||
Theorem | atbase 34576 | An atom is a member of the lattice base set (i.e. a lattice element). (atelch 29203 analog.) (Contributed by NM, 10-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) | ||
Theorem | atssbase 34577 | The set of atoms is a subset of the base set. (atssch 29202 analog.) (Contributed by NM, 21-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ 𝐴 ⊆ 𝐵 | ||
Theorem | 0ltat 34578 | An atom is greater than zero. (Contributed by NM, 4-Jul-2012.) |
⊢ 0 = (0.‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ OP ∧ 𝑃 ∈ 𝐴) → 0 < 𝑃) | ||
Theorem | leatb 34579 | A poset element less than or equal to an atom equals either zero or the atom. (atss 29205 analog.) (Contributed by NM, 17-Nov-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (𝑋 ≤ 𝑃 ↔ (𝑋 = 𝑃 ∨ 𝑋 = 0 ))) | ||
Theorem | leat 34580 | A poset element less than or equal to an atom equals either zero or the atom. (Contributed by NM, 15-Oct-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑋 ≤ 𝑃) → (𝑋 = 𝑃 ∨ 𝑋 = 0 )) | ||
Theorem | leat2 34581 | A nonzero poset element less than or equal to an atom equals the atom. (Contributed by NM, 6-Mar-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ (𝑋 ≠ 0 ∧ 𝑋 ≤ 𝑃)) → 𝑋 = 𝑃) | ||
Theorem | leat3 34582 | A poset element less than or equal to an atom is either an atom or zero. (Contributed by NM, 2-Dec-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑋 ≤ 𝑃) → (𝑋 ∈ 𝐴 ∨ 𝑋 = 0 )) | ||
Theorem | meetat 34583 | The meet of any element with an atom is either the atom or zero. (Contributed by NM, 28-Aug-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → ((𝑋 ∧ 𝑃) = 𝑃 ∨ (𝑋 ∧ 𝑃) = 0 )) | ||
Theorem | meetat2 34584 | The meet of any element with an atom is either the atom or zero. (Contributed by NM, 30-Aug-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → ((𝑋 ∧ 𝑃) ∈ 𝐴 ∨ (𝑋 ∧ 𝑃) = 0 )) | ||
Definition | df-atl 34585* | Define the class of atomic lattices, in which every nonzero element is greater than or equal to an atom. We also ensure the existence of a lattice zero, since a lattice by itself may not have a zero. (Contributed by NM, 18-Sep-2011.) (Revised by NM, 14-Sep-2018.) |
⊢ AtLat = {𝑘 ∈ Lat ∣ ((Base‘𝑘) ∈ dom (glb‘𝑘) ∧ ∀𝑥 ∈ (Base‘𝑘)(𝑥 ≠ (0.‘𝑘) → ∃𝑝 ∈ (Atoms‘𝑘)𝑝(le‘𝑘)𝑥))} | ||
Theorem | isatl 34586* | The predicate "is an atomic lattice." Every nonzero element is less than or equal to an atom. (Contributed by NM, 18-Sep-2011.) (Revised by NM, 14-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (𝐾 ∈ AtLat ↔ (𝐾 ∈ Lat ∧ 𝐵 ∈ dom 𝐺 ∧ ∀𝑥 ∈ 𝐵 (𝑥 ≠ 0 → ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥))) | ||
Theorem | atllat 34587 | An atomic lattice is a lattice. (Contributed by NM, 21-Oct-2011.) |
⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Lat) | ||
Theorem | atlpos 34588 | An atomic lattice is a poset. (Contributed by NM, 5-Nov-2012.) |
⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Poset) | ||
Theorem | atl0dm 34589 | Condition necessary for zero element to exist. (Contributed by NM, 14-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) ⇒ ⊢ (𝐾 ∈ AtLat → 𝐵 ∈ dom 𝐺) | ||
Theorem | atl0cl 34590 | An atomic lattice has a zero element. We can use this in place of op0cl 34471 for lattices without orthocomplements. (Contributed by NM, 5-Nov-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 0 = (0.‘𝐾) ⇒ ⊢ (𝐾 ∈ AtLat → 0 ∈ 𝐵) | ||
Theorem | atl0le 34591 | Orthoposet zero is less than or equal to any element. (ch0le 28300 analog.) (Contributed by NM, 12-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0.‘𝐾) ⇒ ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵) → 0 ≤ 𝑋) | ||
Theorem | atlle0 34592 | An element less than or equal to zero equals zero. (chle0 28302 analog.) (Contributed by NM, 21-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0.‘𝐾) ⇒ ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵) → (𝑋 ≤ 0 ↔ 𝑋 = 0 )) | ||
Theorem | atlltn0 34593 | A lattice element greater than zero is nonzero. (Contributed by NM, 1-Jun-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ 0 = (0.‘𝐾) ⇒ ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵) → ( 0 < 𝑋 ↔ 𝑋 ≠ 0 )) | ||
Theorem | isat3 34594* | The predicate "is an atom". (elat2 29199 analog.) (Contributed by NM, 27-Apr-2014.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (𝐾 ∈ AtLat → (𝑃 ∈ 𝐴 ↔ (𝑃 ∈ 𝐵 ∧ 𝑃 ≠ 0 ∧ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑃 → (𝑥 = 𝑃 ∨ 𝑥 = 0 ))))) | ||
Theorem | atn0 34595 | An atom is not zero. (atne0 29204 analog.) (Contributed by NM, 5-Nov-2012.) |
⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → 𝑃 ≠ 0 ) | ||
Theorem | atnle0 34596 | An atom is not less than or equal to zero. (Contributed by NM, 17-Oct-2011.) |
⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → ¬ 𝑃 ≤ 0 ) | ||
Theorem | atlen0 34597 | A lattice element is nonzero if an atom is under it. (Contributed by NM, 26-May-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 𝑋 ≠ 0 ) | ||
Theorem | atcmp 34598 | If two atoms are comparable, they are equal. (atsseq 29206 analog.) (Contributed by NM, 13-Oct-2011.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≤ 𝑄 ↔ 𝑃 = 𝑄)) | ||
Theorem | atncmp 34599 | Frequently-used variation of atcmp 34598. (Contributed by NM, 29-Jun-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (¬ 𝑃 ≤ 𝑄 ↔ 𝑃 ≠ 𝑄)) | ||
Theorem | atnlt 34600 | Two atoms cannot satisfy the less than relation. (Contributed by NM, 7-Feb-2012.) |
⊢ < = (lt‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ¬ 𝑃 < 𝑄) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |