Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isriscg Structured version   Visualization version   GIF version

Theorem isriscg 33783
Description: The ring isomorphism relation. (Contributed by Jeff Madsen, 16-Jun-2011.)
Assertion
Ref Expression
isriscg ((𝑅𝐴𝑆𝐵) → (𝑅𝑟 𝑆 ↔ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RngIso 𝑆))))
Distinct variable groups:   𝑅,𝑓   𝑆,𝑓
Allowed substitution hints:   𝐴(𝑓)   𝐵(𝑓)

Proof of Theorem isriscg
Dummy variables 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2689 . . . 4 (𝑟 = 𝑅 → (𝑟 ∈ RingOps ↔ 𝑅 ∈ RingOps))
21anbi1d 741 . . 3 (𝑟 = 𝑅 → ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ↔ (𝑅 ∈ RingOps ∧ 𝑠 ∈ RingOps)))
3 oveq1 6657 . . . . 5 (𝑟 = 𝑅 → (𝑟 RngIso 𝑠) = (𝑅 RngIso 𝑠))
43eleq2d 2687 . . . 4 (𝑟 = 𝑅 → (𝑓 ∈ (𝑟 RngIso 𝑠) ↔ 𝑓 ∈ (𝑅 RngIso 𝑠)))
54exbidv 1850 . . 3 (𝑟 = 𝑅 → (∃𝑓 𝑓 ∈ (𝑟 RngIso 𝑠) ↔ ∃𝑓 𝑓 ∈ (𝑅 RngIso 𝑠)))
62, 5anbi12d 747 . 2 (𝑟 = 𝑅 → (((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑟 RngIso 𝑠)) ↔ ((𝑅 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RngIso 𝑠))))
7 eleq1 2689 . . . 4 (𝑠 = 𝑆 → (𝑠 ∈ RingOps ↔ 𝑆 ∈ RingOps))
87anbi2d 740 . . 3 (𝑠 = 𝑆 → ((𝑅 ∈ RingOps ∧ 𝑠 ∈ RingOps) ↔ (𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps)))
9 oveq2 6658 . . . . 5 (𝑠 = 𝑆 → (𝑅 RngIso 𝑠) = (𝑅 RngIso 𝑆))
109eleq2d 2687 . . . 4 (𝑠 = 𝑆 → (𝑓 ∈ (𝑅 RngIso 𝑠) ↔ 𝑓 ∈ (𝑅 RngIso 𝑆)))
1110exbidv 1850 . . 3 (𝑠 = 𝑆 → (∃𝑓 𝑓 ∈ (𝑅 RngIso 𝑠) ↔ ∃𝑓 𝑓 ∈ (𝑅 RngIso 𝑆)))
128, 11anbi12d 747 . 2 (𝑠 = 𝑆 → (((𝑅 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RngIso 𝑠)) ↔ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RngIso 𝑆))))
13 df-risc 33782 . 2 𝑟 = {⟨𝑟, 𝑠⟩ ∣ ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑟 RngIso 𝑠))}
146, 12, 13brabg 4994 1 ((𝑅𝐴𝑆𝐵) → (𝑅𝑟 𝑆 ↔ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RngIso 𝑆))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wex 1704  wcel 1990   class class class wbr 4653  (class class class)co 6650  RingOpscrngo 33693   RngIso crngiso 33760  𝑟 crisc 33761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-iota 5851  df-fv 5896  df-ov 6653  df-risc 33782
This theorem is referenced by:  isrisc  33784  risc  33785
  Copyright terms: Public domain W3C validator