Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iuneq2f Structured version   Visualization version   GIF version

Theorem iuneq2f 33963
Description: Equality deduction for indexed union. (Contributed by Giovanni Mascellani, 9-Apr-2018.)
Hypotheses
Ref Expression
iuneq2f.1 𝑥𝐴
iuneq2f.2 𝑥𝐵
Assertion
Ref Expression
iuneq2f (𝐴 = 𝐵 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶)

Proof of Theorem iuneq2f
StepHypRef Expression
1 iuneq2f.1 . . 3 𝑥𝐴
2 iuneq2f.2 . . 3 𝑥𝐵
31, 2nfeq 2776 . 2 𝑥 𝐴 = 𝐵
4 id 22 . 2 (𝐴 = 𝐵𝐴 = 𝐵)
5 eqidd 2623 . 2 (𝐴 = 𝐵𝐶 = 𝐶)
63, 1, 2, 4, 5iuneq12df 4544 1 (𝐴 = 𝐵 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wnfc 2751   ciun 4520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-iun 4522
This theorem is referenced by:  iuneq12f  33972
  Copyright terms: Public domain W3C validator