| Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iuneq12f | Structured version Visualization version GIF version | ||
| Description: Equality deduction for indexed unions. (Contributed by Giovanni Mascellani, 10-Apr-2018.) |
| Ref | Expression |
|---|---|
| iuneq12f.1 | ⊢ Ⅎ𝑥𝐴 |
| iuneq12f.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| iuneq12f | ⊢ ((𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝐶 = 𝐷) → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iuneq2 4537 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐶 = 𝐷 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐴 𝐷) | |
| 2 | iuneq12f.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 3 | iuneq12f.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
| 4 | 2, 3 | iuneq2f 33963 | . 2 ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐷 = ∪ 𝑥 ∈ 𝐵 𝐷) |
| 5 | 1, 4 | sylan9eqr 2678 | 1 ⊢ ((𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝐶 = 𝐷) → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 Ⅎwnfc 2751 ∀wral 2912 ∪ ciun 4520 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-in 3581 df-ss 3588 df-iun 4522 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |