MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunopeqop Structured version   Visualization version   GIF version

Theorem iunopeqop 4981
Description: Implication of an ordered pair being equal to an indexed union of singletons of ordered pairs. (Contributed by AV, 20-Sep-2020.)
Hypotheses
Ref Expression
iunopeqop.b 𝐵 ∈ V
iunopeqop.c 𝐶 ∈ V
iunopeqop.d 𝐷 ∈ V
Assertion
Ref Expression
iunopeqop (𝐴 ≠ ∅ → ( 𝑥𝐴 {⟨𝑥, 𝐵⟩} = ⟨𝐶, 𝐷⟩ → ∃𝑧 𝐴 = {𝑧}))
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐶   𝑥,𝐷
Allowed substitution hints:   𝐵(𝑥,𝑧)   𝐶(𝑧)   𝐷(𝑧)

Proof of Theorem iunopeqop
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 n0snor2el 4364 . 2 (𝐴 ≠ ∅ → (∃𝑥𝐴𝑦𝐴 𝑥𝑦 ∨ ∃𝑧 𝐴 = {𝑧}))
2 nfiu1 4550 . . . . . 6 𝑥 𝑥𝐴 {⟨𝑥, 𝐵⟩}
32nfeq1 2778 . . . . 5 𝑥 𝑥𝐴 {⟨𝑥, 𝐵⟩} = ⟨𝐶, 𝐷
4 nfv 1843 . . . . 5 𝑥𝑧 𝐴 = {𝑧}
53, 4nfim 1825 . . . 4 𝑥( 𝑥𝐴 {⟨𝑥, 𝐵⟩} = ⟨𝐶, 𝐷⟩ → ∃𝑧 𝐴 = {𝑧})
6 ssiun2 4563 . . . . . . 7 (𝑥𝐴 → {⟨𝑥, 𝐵⟩} ⊆ 𝑥𝐴 {⟨𝑥, 𝐵⟩})
7 nfcv 2764 . . . . . . . 8 𝑥𝑦
8 nfcsb1v 3549 . . . . . . . . . . 11 𝑥𝑦 / 𝑥𝐵
97, 8nfop 4418 . . . . . . . . . 10 𝑥𝑦, 𝑦 / 𝑥𝐵
109nfsn 4242 . . . . . . . . 9 𝑥{⟨𝑦, 𝑦 / 𝑥𝐵⟩}
1110, 2nfss 3596 . . . . . . . 8 𝑥{⟨𝑦, 𝑦 / 𝑥𝐵⟩} ⊆ 𝑥𝐴 {⟨𝑥, 𝐵⟩}
12 id 22 . . . . . . . . . . 11 (𝑥 = 𝑦𝑥 = 𝑦)
13 csbeq1a 3542 . . . . . . . . . . 11 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
1412, 13opeq12d 4410 . . . . . . . . . 10 (𝑥 = 𝑦 → ⟨𝑥, 𝐵⟩ = ⟨𝑦, 𝑦 / 𝑥𝐵⟩)
1514sneqd 4189 . . . . . . . . 9 (𝑥 = 𝑦 → {⟨𝑥, 𝐵⟩} = {⟨𝑦, 𝑦 / 𝑥𝐵⟩})
1615sseq1d 3632 . . . . . . . 8 (𝑥 = 𝑦 → ({⟨𝑥, 𝐵⟩} ⊆ 𝑥𝐴 {⟨𝑥, 𝐵⟩} ↔ {⟨𝑦, 𝑦 / 𝑥𝐵⟩} ⊆ 𝑥𝐴 {⟨𝑥, 𝐵⟩}))
177, 11, 16, 6vtoclgaf 3271 . . . . . . 7 (𝑦𝐴 → {⟨𝑦, 𝑦 / 𝑥𝐵⟩} ⊆ 𝑥𝐴 {⟨𝑥, 𝐵⟩})
186, 17anim12i 590 . . . . . 6 ((𝑥𝐴𝑦𝐴) → ({⟨𝑥, 𝐵⟩} ⊆ 𝑥𝐴 {⟨𝑥, 𝐵⟩} ∧ {⟨𝑦, 𝑦 / 𝑥𝐵⟩} ⊆ 𝑥𝐴 {⟨𝑥, 𝐵⟩}))
19 unss 3787 . . . . . . 7 (({⟨𝑥, 𝐵⟩} ⊆ 𝑥𝐴 {⟨𝑥, 𝐵⟩} ∧ {⟨𝑦, 𝑦 / 𝑥𝐵⟩} ⊆ 𝑥𝐴 {⟨𝑥, 𝐵⟩}) ↔ ({⟨𝑥, 𝐵⟩} ∪ {⟨𝑦, 𝑦 / 𝑥𝐵⟩}) ⊆ 𝑥𝐴 {⟨𝑥, 𝐵⟩})
20 sseq2 3627 . . . . . . . . 9 ( 𝑥𝐴 {⟨𝑥, 𝐵⟩} = ⟨𝐶, 𝐷⟩ → (({⟨𝑥, 𝐵⟩} ∪ {⟨𝑦, 𝑦 / 𝑥𝐵⟩}) ⊆ 𝑥𝐴 {⟨𝑥, 𝐵⟩} ↔ ({⟨𝑥, 𝐵⟩} ∪ {⟨𝑦, 𝑦 / 𝑥𝐵⟩}) ⊆ ⟨𝐶, 𝐷⟩))
21 df-pr 4180 . . . . . . . . . . . 12 {⟨𝑥, 𝐵⟩, ⟨𝑦, 𝑦 / 𝑥𝐵⟩} = ({⟨𝑥, 𝐵⟩} ∪ {⟨𝑦, 𝑦 / 𝑥𝐵⟩})
2221eqcomi 2631 . . . . . . . . . . 11 ({⟨𝑥, 𝐵⟩} ∪ {⟨𝑦, 𝑦 / 𝑥𝐵⟩}) = {⟨𝑥, 𝐵⟩, ⟨𝑦, 𝑦 / 𝑥𝐵⟩}
2322sseq1i 3629 . . . . . . . . . 10 (({⟨𝑥, 𝐵⟩} ∪ {⟨𝑦, 𝑦 / 𝑥𝐵⟩}) ⊆ ⟨𝐶, 𝐷⟩ ↔ {⟨𝑥, 𝐵⟩, ⟨𝑦, 𝑦 / 𝑥𝐵⟩} ⊆ ⟨𝐶, 𝐷⟩)
24 vex 3203 . . . . . . . . . . . 12 𝑥 ∈ V
25 iunopeqop.b . . . . . . . . . . . 12 𝐵 ∈ V
26 vex 3203 . . . . . . . . . . . 12 𝑦 ∈ V
2725csbex 4793 . . . . . . . . . . . 12 𝑦 / 𝑥𝐵 ∈ V
28 iunopeqop.c . . . . . . . . . . . 12 𝐶 ∈ V
29 iunopeqop.d . . . . . . . . . . . 12 𝐷 ∈ V
3024, 25, 26, 27, 28, 29propssopi 4971 . . . . . . . . . . 11 ({⟨𝑥, 𝐵⟩, ⟨𝑦, 𝑦 / 𝑥𝐵⟩} ⊆ ⟨𝐶, 𝐷⟩ → 𝑥 = 𝑦)
31 eqneqall 2805 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥𝑦 → ((𝑥𝐴𝑦𝐴) → ∃𝑧 𝐴 = {𝑧})))
3230, 31syl 17 . . . . . . . . . 10 ({⟨𝑥, 𝐵⟩, ⟨𝑦, 𝑦 / 𝑥𝐵⟩} ⊆ ⟨𝐶, 𝐷⟩ → (𝑥𝑦 → ((𝑥𝐴𝑦𝐴) → ∃𝑧 𝐴 = {𝑧})))
3323, 32sylbi 207 . . . . . . . . 9 (({⟨𝑥, 𝐵⟩} ∪ {⟨𝑦, 𝑦 / 𝑥𝐵⟩}) ⊆ ⟨𝐶, 𝐷⟩ → (𝑥𝑦 → ((𝑥𝐴𝑦𝐴) → ∃𝑧 𝐴 = {𝑧})))
3420, 33syl6bi 243 . . . . . . . 8 ( 𝑥𝐴 {⟨𝑥, 𝐵⟩} = ⟨𝐶, 𝐷⟩ → (({⟨𝑥, 𝐵⟩} ∪ {⟨𝑦, 𝑦 / 𝑥𝐵⟩}) ⊆ 𝑥𝐴 {⟨𝑥, 𝐵⟩} → (𝑥𝑦 → ((𝑥𝐴𝑦𝐴) → ∃𝑧 𝐴 = {𝑧}))))
3534com14 96 . . . . . . 7 ((𝑥𝐴𝑦𝐴) → (({⟨𝑥, 𝐵⟩} ∪ {⟨𝑦, 𝑦 / 𝑥𝐵⟩}) ⊆ 𝑥𝐴 {⟨𝑥, 𝐵⟩} → (𝑥𝑦 → ( 𝑥𝐴 {⟨𝑥, 𝐵⟩} = ⟨𝐶, 𝐷⟩ → ∃𝑧 𝐴 = {𝑧}))))
3619, 35syl5bi 232 . . . . . 6 ((𝑥𝐴𝑦𝐴) → (({⟨𝑥, 𝐵⟩} ⊆ 𝑥𝐴 {⟨𝑥, 𝐵⟩} ∧ {⟨𝑦, 𝑦 / 𝑥𝐵⟩} ⊆ 𝑥𝐴 {⟨𝑥, 𝐵⟩}) → (𝑥𝑦 → ( 𝑥𝐴 {⟨𝑥, 𝐵⟩} = ⟨𝐶, 𝐷⟩ → ∃𝑧 𝐴 = {𝑧}))))
3718, 36mpd 15 . . . . 5 ((𝑥𝐴𝑦𝐴) → (𝑥𝑦 → ( 𝑥𝐴 {⟨𝑥, 𝐵⟩} = ⟨𝐶, 𝐷⟩ → ∃𝑧 𝐴 = {𝑧})))
3837rexlimdva 3031 . . . 4 (𝑥𝐴 → (∃𝑦𝐴 𝑥𝑦 → ( 𝑥𝐴 {⟨𝑥, 𝐵⟩} = ⟨𝐶, 𝐷⟩ → ∃𝑧 𝐴 = {𝑧})))
395, 38rexlimi 3024 . . 3 (∃𝑥𝐴𝑦𝐴 𝑥𝑦 → ( 𝑥𝐴 {⟨𝑥, 𝐵⟩} = ⟨𝐶, 𝐷⟩ → ∃𝑧 𝐴 = {𝑧}))
40 ax-1 6 . . 3 (∃𝑧 𝐴 = {𝑧} → ( 𝑥𝐴 {⟨𝑥, 𝐵⟩} = ⟨𝐶, 𝐷⟩ → ∃𝑧 𝐴 = {𝑧}))
4139, 40jaoi 394 . 2 ((∃𝑥𝐴𝑦𝐴 𝑥𝑦 ∨ ∃𝑧 𝐴 = {𝑧}) → ( 𝑥𝐴 {⟨𝑥, 𝐵⟩} = ⟨𝐶, 𝐷⟩ → ∃𝑧 𝐴 = {𝑧}))
421, 41syl 17 1 (𝐴 ≠ ∅ → ( 𝑥𝐴 {⟨𝑥, 𝐵⟩} = ⟨𝐶, 𝐷⟩ → ∃𝑧 𝐴 = {𝑧}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384   = wceq 1483  wex 1704  wcel 1990  wne 2794  wrex 2913  Vcvv 3200  csb 3533  cun 3572  wss 3574  c0 3915  {csn 4177  {cpr 4179  cop 4183   ciun 4520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-iun 4522
This theorem is referenced by:  funopsn  6413
  Copyright terms: Public domain W3C validator