| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iunopeqop | Structured version Visualization version Unicode version | ||
| Description: Implication of an ordered pair being equal to an indexed union of singletons of ordered pairs. (Contributed by AV, 20-Sep-2020.) |
| Ref | Expression |
|---|---|
| iunopeqop.b |
|
| iunopeqop.c |
|
| iunopeqop.d |
|
| Ref | Expression |
|---|---|
| iunopeqop |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0snor2el 4364 |
. 2
| |
| 2 | nfiu1 4550 |
. . . . . 6
| |
| 3 | 2 | nfeq1 2778 |
. . . . 5
|
| 4 | nfv 1843 |
. . . . 5
| |
| 5 | 3, 4 | nfim 1825 |
. . . 4
|
| 6 | ssiun2 4563 |
. . . . . . 7
| |
| 7 | nfcv 2764 |
. . . . . . . 8
| |
| 8 | nfcsb1v 3549 |
. . . . . . . . . . 11
| |
| 9 | 7, 8 | nfop 4418 |
. . . . . . . . . 10
|
| 10 | 9 | nfsn 4242 |
. . . . . . . . 9
|
| 11 | 10, 2 | nfss 3596 |
. . . . . . . 8
|
| 12 | id 22 |
. . . . . . . . . . 11
| |
| 13 | csbeq1a 3542 |
. . . . . . . . . . 11
| |
| 14 | 12, 13 | opeq12d 4410 |
. . . . . . . . . 10
|
| 15 | 14 | sneqd 4189 |
. . . . . . . . 9
|
| 16 | 15 | sseq1d 3632 |
. . . . . . . 8
|
| 17 | 7, 11, 16, 6 | vtoclgaf 3271 |
. . . . . . 7
|
| 18 | 6, 17 | anim12i 590 |
. . . . . 6
|
| 19 | unss 3787 |
. . . . . . 7
| |
| 20 | sseq2 3627 |
. . . . . . . . 9
| |
| 21 | df-pr 4180 |
. . . . . . . . . . . 12
| |
| 22 | 21 | eqcomi 2631 |
. . . . . . . . . . 11
|
| 23 | 22 | sseq1i 3629 |
. . . . . . . . . 10
|
| 24 | vex 3203 |
. . . . . . . . . . . 12
| |
| 25 | iunopeqop.b |
. . . . . . . . . . . 12
| |
| 26 | vex 3203 |
. . . . . . . . . . . 12
| |
| 27 | 25 | csbex 4793 |
. . . . . . . . . . . 12
|
| 28 | iunopeqop.c |
. . . . . . . . . . . 12
| |
| 29 | iunopeqop.d |
. . . . . . . . . . . 12
| |
| 30 | 24, 25, 26, 27, 28, 29 | propssopi 4971 |
. . . . . . . . . . 11
|
| 31 | eqneqall 2805 |
. . . . . . . . . . 11
| |
| 32 | 30, 31 | syl 17 |
. . . . . . . . . 10
|
| 33 | 23, 32 | sylbi 207 |
. . . . . . . . 9
|
| 34 | 20, 33 | syl6bi 243 |
. . . . . . . 8
|
| 35 | 34 | com14 96 |
. . . . . . 7
|
| 36 | 19, 35 | syl5bi 232 |
. . . . . 6
|
| 37 | 18, 36 | mpd 15 |
. . . . 5
|
| 38 | 37 | rexlimdva 3031 |
. . . 4
|
| 39 | 5, 38 | rexlimi 3024 |
. . 3
|
| 40 | ax-1 6 |
. . 3
| |
| 41 | 39, 40 | jaoi 394 |
. 2
|
| 42 | 1, 41 | syl 17 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-iun 4522 |
| This theorem is referenced by: funopsn 6413 |
| Copyright terms: Public domain | W3C validator |