MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunxdif3 Structured version   Visualization version   GIF version

Theorem iunxdif3 4606
Description: An indexed union where some terms are the empty set. See iunxdif2 4568. (Contributed by Thierry Arnoux, 4-May-2020.)
Hypothesis
Ref Expression
iunxdif3.1 𝑥𝐸
Assertion
Ref Expression
iunxdif3 (∀𝑥𝐸 𝐵 = ∅ → 𝑥 ∈ (𝐴𝐸)𝐵 = 𝑥𝐴 𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐸(𝑥)

Proof of Theorem iunxdif3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 inss2 3834 . . . . . 6 (𝐴𝐸) ⊆ 𝐸
2 nfcv 2764 . . . . . . . . . 10 𝑥𝐴
3 iunxdif3.1 . . . . . . . . . 10 𝑥𝐸
42, 3nfin 3820 . . . . . . . . 9 𝑥(𝐴𝐸)
54, 3ssrexf 3665 . . . . . . . 8 ((𝐴𝐸) ⊆ 𝐸 → (∃𝑥 ∈ (𝐴𝐸)𝑦𝐵 → ∃𝑥𝐸 𝑦𝐵))
6 eliun 4524 . . . . . . . 8 (𝑦 𝑥 ∈ (𝐴𝐸)𝐵 ↔ ∃𝑥 ∈ (𝐴𝐸)𝑦𝐵)
7 eliun 4524 . . . . . . . 8 (𝑦 𝑥𝐸 𝐵 ↔ ∃𝑥𝐸 𝑦𝐵)
85, 6, 73imtr4g 285 . . . . . . 7 ((𝐴𝐸) ⊆ 𝐸 → (𝑦 𝑥 ∈ (𝐴𝐸)𝐵𝑦 𝑥𝐸 𝐵))
98ssrdv 3609 . . . . . 6 ((𝐴𝐸) ⊆ 𝐸 𝑥 ∈ (𝐴𝐸)𝐵 𝑥𝐸 𝐵)
101, 9ax-mp 5 . . . . 5 𝑥 ∈ (𝐴𝐸)𝐵 𝑥𝐸 𝐵
11 iuneq2 4537 . . . . . 6 (∀𝑥𝐸 𝐵 = ∅ → 𝑥𝐸 𝐵 = 𝑥𝐸 ∅)
12 iun0 4576 . . . . . 6 𝑥𝐸 ∅ = ∅
1311, 12syl6eq 2672 . . . . 5 (∀𝑥𝐸 𝐵 = ∅ → 𝑥𝐸 𝐵 = ∅)
1410, 13syl5sseq 3653 . . . 4 (∀𝑥𝐸 𝐵 = ∅ → 𝑥 ∈ (𝐴𝐸)𝐵 ⊆ ∅)
15 ss0 3974 . . . 4 ( 𝑥 ∈ (𝐴𝐸)𝐵 ⊆ ∅ → 𝑥 ∈ (𝐴𝐸)𝐵 = ∅)
1614, 15syl 17 . . 3 (∀𝑥𝐸 𝐵 = ∅ → 𝑥 ∈ (𝐴𝐸)𝐵 = ∅)
1716uneq1d 3766 . 2 (∀𝑥𝐸 𝐵 = ∅ → ( 𝑥 ∈ (𝐴𝐸)𝐵 𝑥 ∈ (𝐴𝐸)𝐵) = (∅ ∪ 𝑥 ∈ (𝐴𝐸)𝐵))
18 iunxun 4605 . . . 4 𝑥 ∈ ((𝐴𝐸) ∪ (𝐴𝐸))𝐵 = ( 𝑥 ∈ (𝐴𝐸)𝐵 𝑥 ∈ (𝐴𝐸)𝐵)
19 inundif 4046 . . . . 5 ((𝐴𝐸) ∪ (𝐴𝐸)) = 𝐴
2019nfth 1727 . . . . . 6 𝑥((𝐴𝐸) ∪ (𝐴𝐸)) = 𝐴
212, 3nfdif 3731 . . . . . . 7 𝑥(𝐴𝐸)
224, 21nfun 3769 . . . . . 6 𝑥((𝐴𝐸) ∪ (𝐴𝐸))
23 id 22 . . . . . 6 (((𝐴𝐸) ∪ (𝐴𝐸)) = 𝐴 → ((𝐴𝐸) ∪ (𝐴𝐸)) = 𝐴)
24 eqidd 2623 . . . . . 6 (((𝐴𝐸) ∪ (𝐴𝐸)) = 𝐴𝐵 = 𝐵)
2520, 22, 2, 23, 24iuneq12df 4544 . . . . 5 (((𝐴𝐸) ∪ (𝐴𝐸)) = 𝐴 𝑥 ∈ ((𝐴𝐸) ∪ (𝐴𝐸))𝐵 = 𝑥𝐴 𝐵)
2619, 25ax-mp 5 . . . 4 𝑥 ∈ ((𝐴𝐸) ∪ (𝐴𝐸))𝐵 = 𝑥𝐴 𝐵
2718, 26eqtr3i 2646 . . 3 ( 𝑥 ∈ (𝐴𝐸)𝐵 𝑥 ∈ (𝐴𝐸)𝐵) = 𝑥𝐴 𝐵
2827a1i 11 . 2 (∀𝑥𝐸 𝐵 = ∅ → ( 𝑥 ∈ (𝐴𝐸)𝐵 𝑥 ∈ (𝐴𝐸)𝐵) = 𝑥𝐴 𝐵)
29 uncom 3757 . . . 4 (∅ ∪ 𝑥 ∈ (𝐴𝐸)𝐵) = ( 𝑥 ∈ (𝐴𝐸)𝐵 ∪ ∅)
30 un0 3967 . . . 4 ( 𝑥 ∈ (𝐴𝐸)𝐵 ∪ ∅) = 𝑥 ∈ (𝐴𝐸)𝐵
3129, 30eqtri 2644 . . 3 (∅ ∪ 𝑥 ∈ (𝐴𝐸)𝐵) = 𝑥 ∈ (𝐴𝐸)𝐵
3231a1i 11 . 2 (∀𝑥𝐸 𝐵 = ∅ → (∅ ∪ 𝑥 ∈ (𝐴𝐸)𝐵) = 𝑥 ∈ (𝐴𝐸)𝐵)
3317, 28, 323eqtr3rd 2665 1 (∀𝑥𝐸 𝐵 = ∅ → 𝑥 ∈ (𝐴𝐸)𝐵 = 𝑥𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  wnfc 2751  wral 2912  wrex 2913  cdif 3571  cun 3572  cin 3573  wss 3574  c0 3915   ciun 4520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-iun 4522
This theorem is referenced by:  aciunf1  29463  ovnsubadd2lem  40859
  Copyright terms: Public domain W3C validator