| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iunxdif3 | Structured version Visualization version Unicode version | ||
| Description: An indexed union where some terms are the empty set. See iunxdif2 4568. (Contributed by Thierry Arnoux, 4-May-2020.) |
| Ref | Expression |
|---|---|
| iunxdif3.1 |
|
| Ref | Expression |
|---|---|
| iunxdif3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss2 3834 |
. . . . . 6
| |
| 2 | nfcv 2764 |
. . . . . . . . . 10
| |
| 3 | iunxdif3.1 |
. . . . . . . . . 10
| |
| 4 | 2, 3 | nfin 3820 |
. . . . . . . . 9
|
| 5 | 4, 3 | ssrexf 3665 |
. . . . . . . 8
|
| 6 | eliun 4524 |
. . . . . . . 8
| |
| 7 | eliun 4524 |
. . . . . . . 8
| |
| 8 | 5, 6, 7 | 3imtr4g 285 |
. . . . . . 7
|
| 9 | 8 | ssrdv 3609 |
. . . . . 6
|
| 10 | 1, 9 | ax-mp 5 |
. . . . 5
|
| 11 | iuneq2 4537 |
. . . . . 6
| |
| 12 | iun0 4576 |
. . . . . 6
| |
| 13 | 11, 12 | syl6eq 2672 |
. . . . 5
|
| 14 | 10, 13 | syl5sseq 3653 |
. . . 4
|
| 15 | ss0 3974 |
. . . 4
| |
| 16 | 14, 15 | syl 17 |
. . 3
|
| 17 | 16 | uneq1d 3766 |
. 2
|
| 18 | iunxun 4605 |
. . . 4
| |
| 19 | inundif 4046 |
. . . . 5
| |
| 20 | 19 | nfth 1727 |
. . . . . 6
|
| 21 | 2, 3 | nfdif 3731 |
. . . . . . 7
|
| 22 | 4, 21 | nfun 3769 |
. . . . . 6
|
| 23 | id 22 |
. . . . . 6
| |
| 24 | eqidd 2623 |
. . . . . 6
| |
| 25 | 20, 22, 2, 23, 24 | iuneq12df 4544 |
. . . . 5
|
| 26 | 19, 25 | ax-mp 5 |
. . . 4
|
| 27 | 18, 26 | eqtr3i 2646 |
. . 3
|
| 28 | 27 | a1i 11 |
. 2
|
| 29 | uncom 3757 |
. . . 4
| |
| 30 | un0 3967 |
. . . 4
| |
| 31 | 29, 30 | eqtri 2644 |
. . 3
|
| 32 | 31 | a1i 11 |
. 2
|
| 33 | 17, 28, 32 | 3eqtr3rd 2665 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-iun 4522 |
| This theorem is referenced by: aciunf1 29463 ovnsubadd2lem 40859 |
| Copyright terms: Public domain | W3C validator |