| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iunxsnf | Structured version Visualization version GIF version | ||
| Description: A singleton index picks out an instance of an indexed union's argument. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| iunxsnf.1 | ⊢ Ⅎ𝑥𝐶 |
| iunxsnf.2 | ⊢ 𝐴 ∈ V |
| iunxsnf.3 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| iunxsnf | ⊢ ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunxsnf.2 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | iunxsnf.1 | . . 3 ⊢ Ⅎ𝑥𝐶 | |
| 3 | iunxsnf.3 | . . 3 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 4 | 2, 3 | iunxsngf2 39230 | . 2 ⊢ (𝐴 ∈ V → ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 Ⅎwnfc 2751 Vcvv 3200 {csn 4177 ∪ ciun 4520 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-sbc 3436 df-sn 4178 df-iun 4522 |
| This theorem is referenced by: fiiuncl 39234 iunp1 39235 sge0iunmptlemfi 40630 |
| Copyright terms: Public domain | W3C validator |