![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > limitssson | Structured version Visualization version GIF version |
Description: The class of all limit ordinals is a subclass of the class of all ordinals. (Contributed by Scott Fenton, 11-Apr-2012.) |
Ref | Expression |
---|---|
limitssson | ⊢ Limits ⊆ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-limits 31967 | . 2 ⊢ Limits = ((On ∩ Fix Bigcup ) ∖ {∅}) | |
2 | difss 3737 | . . 3 ⊢ ((On ∩ Fix Bigcup ) ∖ {∅}) ⊆ (On ∩ Fix Bigcup ) | |
3 | inss1 3833 | . . 3 ⊢ (On ∩ Fix Bigcup ) ⊆ On | |
4 | 2, 3 | sstri 3612 | . 2 ⊢ ((On ∩ Fix Bigcup ) ∖ {∅}) ⊆ On |
5 | 1, 4 | eqsstri 3635 | 1 ⊢ Limits ⊆ On |
Colors of variables: wff setvar class |
Syntax hints: ∖ cdif 3571 ∩ cin 3573 ⊆ wss 3574 ∅c0 3915 {csn 4177 Oncon0 5723 Bigcup cbigcup 31941 Fix cfix 31942 Limits climits 31943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-dif 3577 df-in 3581 df-ss 3588 df-limits 31967 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |