Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limitssson Structured version   Visualization version   GIF version

Theorem limitssson 32018
Description: The class of all limit ordinals is a subclass of the class of all ordinals. (Contributed by Scott Fenton, 11-Apr-2012.)
Assertion
Ref Expression
limitssson Limits ⊆ On

Proof of Theorem limitssson
StepHypRef Expression
1 df-limits 31967 . 2 Limits = ((On ∩ Fix Bigcup ) ∖ {∅})
2 difss 3737 . . 3 ((On ∩ Fix Bigcup ) ∖ {∅}) ⊆ (On ∩ Fix Bigcup )
3 inss1 3833 . . 3 (On ∩ Fix Bigcup ) ⊆ On
42, 3sstri 3612 . 2 ((On ∩ Fix Bigcup ) ∖ {∅}) ⊆ On
51, 4eqsstri 3635 1 Limits ⊆ On
Colors of variables: wff setvar class
Syntax hints:  cdif 3571  cin 3573  wss 3574  c0 3915  {csn 4177  Oncon0 5723   Bigcup cbigcup 31941   Fix cfix 31942   Limits climits 31943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588  df-limits 31967
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator